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Abstract—By employing local renewable energy sources and
power generation units while connected to the central grid, micro-
grid can usher in great benefits in terms of cost efficiency, power
reliability, and environmental awareness. Economic dispatching
is a central problem in microgrid operation, which aims at
effectively scheduling various energy sources to minimize the
operating cost while satisfying the electricity demand. Designing
intelligent economic dispatching strategies for microgrids; how-
ever, it is drastically different from that for conventional central
grids due to two unique challenges. First, the demand and renew-
able generation uncertainty emphasizes the need for online algo-
rithms. Second, the widely-adopted peak-based pricing scheme
brings out the need for new peak-aware strategy design. In this
paper, we tackle these critical challenges and devise peak-aware
online economic dispatching algorithms. We prove that our deter-
ministic and randomized algorithms achieve the best possible
competitive ratios 2 — 8 and e/(e — 1 + B) in the fast respond-
ing generator scenario, where B € [0, 1] is the ratio between the
minimum grid spot price and the local-generation price. By exten-
sive empirical evaluations using real-world traces, we show that
our online algorithms achieve near offline-optimal performance.
In a representative scenario, our algorithm achieves 17.5% and
9.24% cost reduction as compared with the case without local
generation units and the case using peak-oblivious algorithms,
respectively.

Index Terms—Microgrids, online algorithm,
scheduling, economic dispatching.

peak-aware

NOTATIONS

This section lists the main notations used in this paper.

e(f)  The net electricity demand at time ¢ in KWh.

u(t) The amount of energy generated by local generators
at time ¢ in KWh.

v(t)  The amount of energy purchased from electricity grid

at time ¢t in KWh.
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pe(t) The spot price of the electricity from grid at time ¢
in $/KWh.

pzni“ Minimum spot price of the electricity from grid,
min; p, (7).

Dg The unit cost of the electricity by local generators in
$/KWh.

B Ratio between pg‘i“ and p,.

pm  The peak demand price of the electricity from grid
in $/KWh.

RY  The maximum ramping up rate of local generator.

RY  The maximum ramping down rate of local generator.

Local generator capacity.

T Number of time slots in one charging period.

T Set of time slots in one charing period, {1, 2, ..., T}.

Z The set of nonnegative integer numbers.

I. INTRODUCTION

ICROGRID represents a promising paradigm of future
Melectric power systems that autonomously coordinate
distributed renewable energy source (e.g., solar PVs), local
generation unit (e.g., gas generators), and the external grid
to satisfy time-varying energy demand of a local community.
As compared to traditional grids, microgrid has recognized
advantages in cost efficiency, environmental awareness, and
power reliability. Consequently, worldwide installed micro-
grid capacity has witnessed a phenomenon growth, reaching
866 MW in 2014, and is expected to reach 4,100 MW
by 2020 [1].

Energy generation scheduling in microgrid determines the
power output level of local energy sources and power to
be procured from external grid, with the goal of minimiz-
ing the total cost over a pre-determined billing cycle. The
scheduling plan should meet the time-varying energy demand
and respect physical constraints of the generation units. Such
problems have been studied extensively in the power system
literature for traditional grids. Two main variants are unit com-
mitment [2] and economic dispatching [3] problems. The unit
commitment problem typically optimizes the start-up and the
shut-down schedule of power generation units, whereas the
economic dispatching problem optimally schedules the output
levels given the on/off status as the input parameters. In this
paper, we focus on economic dispatching problem in microgrid
scenarios.

At first glance, economic dispatching in microgrid may
appear to be a small-scale version of the classical urban-wide
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economic dispatching problem. However, the following two
unprecedented challenges make the problem fundamentally
different, thereby the previous solutions inapplicable.

> Demand and Renewable Generation Uncertainty in
Microgrid: Classical scheduling strategies for main grid rely
on accurate prediction of future demand and dispatchable
central generation [3]. However, without aggregation effect,
the small-scale demand of microgrid is highly uncertain.
Meanwhile, the penetration of uncontrollable and intermit-
tent renewable sources introduce uncertainty into generation
scheduling. These observations motivate us to investigate new
online scheduling strategies that do not rely on accurate
prediction of future demand and renewable generation [4], [5].

> Peak-Based Charging Model of the External Grid: The
real-world pricing scheme for consumers with large loads
(such as universities or data centers) adopts a hybrid time-of-
use and peak-based charging model where the electricity bill
consists of both the total energy usage and the peak demand
drawn over the billing cycle. The motivation is to encourage
large customers to smooth their demand, thereby the utility
provider can reduce its planned capacity obligations. The peak
price is often more than 100 times higher than the maximum
(on-peak) spot price, e.g., 118 times for PG&E [6], and 227
times for Duke Energy Kentucky [7].! Consequently, the con-
tribution of peak charge in the electricity bill for a typical
costumer can be considerable, e.g., from 20% to 80% for
several Google data centers [8]. These observations suggest
that economic dispatching strategies with peak cost taken into
account (referred to as peak-aware economic dispatching) may
substantially reduce the total operating costs for microgrids as
compared to economic dispatching strategies oblivious to peak
cost (referred to as peak-oblivious economic dispatching). This
is indeed the case as verified by our real-world trace-driven
evaluation in Section IV.

Most of the previous researches on microgrid economic dis-
patching, that we are aware of and review in Section V, either
adopt a peak-oblivious cost model, wherein the costumer bill is
computed by total energy usage following a time-of-use pric-
ing scheme, or rely on an accurate prediction of demand or
renewable generation. In this paper, we tackle the peak-aware
economic dispatching problem for microgrids by designing
competitive online algorithms that do not rely on prediction
of future input. Our main contributions are summarized as
follows:

> We identify and formulate the peak-aware economic dis-
patching problem of minimizing the operating cost for micro-
grids under the hybrid time-of-use and peak-based pricing
scheme in Section II. Notably, two aforementioned challenges
change the structure of the problem fundamentally and call
for online algorithm design.

> In Section III, we focus on “fast-responding” generator
scenario, where the ramping constraints (i.e., the maximum
change in output level over successive steps) of local gener-
ators are ignored. We follow a divide-and-conquer approach

In practice, the unit of peak price is $/KW while the unit of spot price is
$/KWh. This estimation is obtained by assuming the peak demand lasts one
hour.
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and decompose the problem into multiple sub-problems, solve
the sub-problems by their “rent-or-buy” nature, and then com-
bine the solutions to obtain a solution for the original problem.
We then demonstrate that the competitive ratios of our algo-
rithms are (2 — 8) and ¢/(e — 1 + B) for deterministic and
randomized versions respectively, where B € [0, 1] is the ratio
between the minimum grid spot price and the generator price.
We prove that the ratios are the best possible. As such, these
results characterize the fundamental price of uncertainty for
the problem. The results in this part will help to solve the
problem in “slow-responding” generator scenario [9].

> In Section IV, by extensive evaluations using real-world
traces, we show that our online algorithms can achieve satis-
factory empirical performance. Furthermore, our peak-aware
online algorithms achieve near offline-optimal performance,
and outperform the peak-oblivious designs under various set-
tings. The substantial cost reduction shows the benefit and
necessity of designing peak-aware strategies for economic
dispatching in microgrids.

Some preliminary results in this paper were presented at
ACM e-Energy 2015 [10] and all proofs are in the appendices.

II. PROBLEM FORMULATION

In the microgrid economic dispatching problem, the objec-
tive is to orchestrate various energy sources to minimize the
operating cost while satisfying the electricity demand.

We consider one billing cycle, which is a finite time hori-
zon set 7 = {1, ..., T} with T discrete time slots of uniform
length. In practice, the duration of one cycle is usually one
month and the length of each time slot is 15 minutes [6]. In
this paper, we quantize the electricity supply and demand to
take only nonnegative integer values; this will simplify our
presentation later on. Note that the quantization step can be
arbitrarily small to achieve arbitrary granularity level.

Net Electricity Demand: Let e(t) be the net electricity
demand in time slot ¢, i.e., the total electricity demand sub-
tracted by the renewable generation. Note that since the
renewable energy generation is in general very difficult to pre-
dict, we do not assume any specific stochastic model of e(?),
the pattern of which can be arbitrary.

Local Generation: There are local generators deployed in
the microgrid with total generation capacity C, i.e., they can
jointly satisfy at most C amount of electricity demand for each
time slot.> We consider a practical setting where the gener-
ator’s incremental power output in two consecutive slots is
limited by the ramping-up and ramping-down constraints RY
and RY, respectively. Most microgrids today employ small-
capacity generators that are powered by gas turbines or diesel
engines. These generators are ‘fast-responding” in the sense
that they have large ramping-up/-down rates. Meanwhile, there
are also “slow-responding” generators with small ramping-
up/-down rates. We denote p, as the cost of generating unit
electricity using local generators.

2Conventional]y a generator’s capacity is measured in KW, we consider a
discrete time setting, under which the generator’s capacity is computed by its
actual capacity in KW multiplied by the length of slot in hour. For example,
for a generator with actual capacity C = 10KW and the length of slot is
0.25 hour, its capacity is 2.5KWh.
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Electricity From the External Grid: The microgrid can also
obtain electricity supply from the external grid for unbalanced
electricity demand in an on-demand manner. We denote the
spot price at time ¢ from the external grid as p. (). We assume
that p.(f) > preni“ > (0.3 We do not assume any stochastic
model of p,(f). For ease of discussion later, we define g £
pg‘i“ /P, as the ratio between the minimum grid price and the
unit cost of local generation.

Cost Model: The microgrid operating cost in 7 includes the
expense of purchasing electricity from the external grid and
that of local generation. Let v(f) be the amount of electricity
purchased from the external grid and u(7) be the amount of
electricity generated locally.

The cost of grid electricity consists of volume charge and
peak charge. The volume charge is simply the sum of volume
cost in all the time slots, i.e., Y, p.(H)v(r). In practice, the
peak charge is based on the maximum single-slot power and
the peak price unit is $/KW [6], which is different from the
spot price unit $/KWh. Let the peak price in $/KW be p,, and
the length of one time slot be § (e.g., 0.25 hour), we convert
the peak price to $/KWh as p,, = p,,/8. Consequently, the
peak charge is p,, max,v(t), i.e., the peak demand over the
billing cycle (in KWh) multiplied by p,, (in $/KWh). This
method is similar to the one used in [8]. We remark that p,,
is usually more than 100 times larger than p,(¢) [6].

For local generation, the cost of a generator to gen-
erate 6 amount of electricity is commonly modeled as a
quadratic function [2], i.e., say, ab? + bO + c. The coeffi-
cient a is usually orders of magnitude smaller than b (e.g., for
a typical oil generator with capacity ISMW, a = 0.007,
b = 48.5).* Consequently, for small-capacity generators
employed in microgrids, the quadratic term a6? is usually
much smaller than the linear term b6 and is negligible. In
this paper, we consider the homogeneous local generators
and denote p, as the unit generation cost. The total local
generation cost is simply Y, pou(r).

Putting together all the components, the microgird total
operating cost over a billing cycle is given by

Cost(u,v) = Zpe(t)v(t) +Pm max v(t) + Zpgu(t)

teT teT
———

by local generators

(D

Existing microgrid generation scheduling schemes [4], [5]
did not consider the peak charge term p,,, max; v(¢); we refer to
these schemes as Peak-Oblivious. In this paper, we consider
the Peak-Aware Economic Dispatching (PAED) problem as
follows,

by external grid

PAED min Cost(u,v)
u,v
st. u(t) +v@) >e®), teT,

u®) <C, teT,

(2a)
(2b)

3We remark that the electricity spot price can sometime be negative in
practice [11]. We restrict our attention to the case with p,(f) > 0 in this study
and leave the general case with negative price to future work.

4This can be further verified by more examples
http://pscal.ece.gatech.edu/archive/testsys/generators.html.

from

ut+1)—u@® <RY, teT, (2¢)
u) —ut+1) <Ry, reT, (2d)
var. u(f),v(t) e Z*, teT.

The constraint in (2a) ensures that the electricity demand is
satisfied. The constraint in (2b) is due to the generator capac-
ity limitation. The constraints in (2¢)-(2d) reflect the ramping
up/down constraints respectively.

In the offline setting where the net demand in the entire time
horizon, i.e., e(f) for all ¢ in T, is given (by for example accu-
rate prediction), problem PAED can be solved easily using
dynamic programming. If we consider continuous supply, the
optimization problem is convex. However, the net demand e(?)
in microgrid is hard to predict as it inherits substantial uncer-
tainty. This motivates the need of online strategies that do not
rely on net demand prediction to operate [5].

In this paper, we use competitive ratio (CR) as the metric
to evaluate how good an online algorithm is. For an online
algorithm A4, its competitive ratio is defined as the maximum
ratio between the cost it incurs and the offline optimal cost
over all inputs, ie.,

Cost incurred by A
max " ) .
all inputs Offline optimal cost

CR(A) £

Clearly we have CR > 1. It is desired to design online algo-
rithms with small competitive ratios, since it guarantees that,
for any input, the cost of the online algorithm is close to the
offline optimal.

III. FAST-RESPONDING GENERATOR CASE

In this section, we relax the ramping constraints (2c¢)-(2d)
and consider the fast-responding generator scenario. Most gen-
erators employed in microgrids can ramp up/down very fast.
For example, a diesel-based engine can ramp up/down 40%
of its capacity per minute [12]. Considering the time scale of
each slot (e.g., 15 minutes), those generators can be thought
as having no ramping constraints. That is, RY = R4 = C.
We note that even though we relax the ramping constraints,
the relaxed problem, denoted as FS-PAED, still covers many
practical scenarios in microgrids [5]. Moreover, the results in
this section serves a building block for designing online algo-
rithm for the original problem PAED with ramping constraints,
which is presented in our technical report [9].

In the following, we focus on the scenario where the unit
cost of local generators is always higher than that of external
grid, i.e., p.(t) < pg. If p.(t) > pg, it is always optimal to use
the local generator as much as possible (u(r) = max{e(z), C})
for both online and offline algorithms. The demands in such
time slots will incur equal costs for the online and offline
algorithms and decrease the ratio between them. Thus ignor-
ing such demands will not change the competitive analysis of
the online algorithms. As a result, we can have pMi" < Py
and g < 1.

We will first consider a special version of problem
FS-PAED, named as FS-PAED]‘, where the net demand only
takes value O or 1. We design optimal online algorithms for
problem FS-PAEDF and then extend the algorithms to solve
the general problem FS-PAED.
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A. Problem FS-PAED* and an Optimal Offline Solution
We now consider a special version of problem FS-PAED
as follows:
FS — PAED* : min Cost(X, v")
st. k(@) +F @) = ),
w0, V(1) € {0, 1),

teT,
teT,

var.

where ¢X(r) only takes value 0 or 1. To keep the problem
interesting, we assume the capacity C to be larger than 1;
thus the capacity constraint is inactive and removed.

Note that problem FS-PAED* can be solved by dynamic
programming, which however does not seem to bring sig-
nificant insights for developing online algorithms. As such,
in what follows, we study the offline optimal solution from
another angle to reveal a useful structure, which we exploit to
design efficient online algorithms.

Under the setting, the unit cost of local generation is
more expensive than the spot price of the external grid, i.e.,
Pe(t) < pg. However, the expensive local generation can be
leveraged to cut off the peak demand satisfied by the external
grid and thus the prohibited peak charge from the external grid.
Thus, the key in solving problem FS-PAED/ lies in balanc-
ing between the cost of using the expensive local generation
and the peak charge of using the external grid. It turns out
the optimal offline solution, as shown in Lemma 1, is devel-
oped by comparing the accumulated deficit of using the local
generation and the unit peak charge.

Lemma I: An optimal offline solution of FS-PAED,
denoted by {((u*(£))*, (W (£))*)}7, only takes value O and 1
and is given by (uX(1)* = k(k) — (V*(r))* and

o if 0 > 1, then (V*(1))* = €X(r), for all 7 in T,

« otherwise (V¥(1)* = 0, for all ¢ in 7.

Here o is a critical peak-demand threshold defined by

1
o= —[Z(pg —pea))e"(n]. 3)

Pm teT

Remark: The optimal solution constructed in Lemma 1 is
computed given that the critical peak-demand threshold o is
determined. Meanwhile, o can only be computed in the offline
setting where the net demand in the entire horizon is given, and
it turns out it is the sufficient statistics of the net demand for
characterizing the ratio between the cost of an online algorithm
and the offline optimal cost.

B. Online Algorithms for Problem FS-PAED*

The challenge for the online algorithm comes from the fact
that it cannot determine the value of critical peak-demand
threshold o ahead of time. This brings out a dilemma in online
decision making: fo suffer deficit of local generator and bypass
the peak charge or to pay for the peak and enjoy cheaper elec-
tricity from the grid. The most aggressive strategy acquires
electricity from the grid from the very beginning, while the
most conservative strategy uses local generation to satisfy all
the net demands in the entire horizon, to avoid the peak charge.

An important observation in online decision making for
problem FS-PAEDF is that after purchasing electricity from
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the grid once, meaning the peak charge has already been paid
(and will not be charged again during the current billing cycle),
the microgrid should continue to use the cheap electricity from
the grid until the end of the billing cycle. Then the key decision
is to determine when to start to pay the peak-charge premium
and buy electricity from the grid.

To pursue online algorithms with minimum competitive
ratio, it turns out that it suffices to focus on online algo-
rithms that switch from local generation to grid electricity
procurement when the accumulated local generation deficit
exceeds some threshold, say s - p,,, where s € [0, 00) is an
algorithm-specific parameter.

For deterministic algorithms, these are the ones switching
to grid electricity procurement at time t that satisfies the
following condition for the first time in the entire horizon:

T

> (g = pe®)e () = 5 pn.

t=1

The most aggressive strategy discussed above corresponds to
s = 0, and the most conservative one corresponds to s = 00.
Randomized online algorithms can be then characterized by
probability distributions of s.

1) An Optimal Deterministic Online Algorithm: The deter-
ministic online algorithm we design is to set s = 1, which
means that we will purchase electricity from the grid when the
accumulated local generation deficit seen so far just equals the
peak charge. We name this algorithm as Break-Even Economic
Dispatching for problem FS-PAED* (BED-k). We provide its
performance guarantee in the following theorem.

Theorem 1: The competitive ratio of BED-k is given by

CR(BED—k) =2 — 8,

and no other deterministic online algorithm can achieve a
smaller competitive ratio.’

2) An Optimal Randomized Online Algorithm: We can
design a randomized online by randomly picking a value
of s and start to purchase electricity from the grid when
>, (pg — Pe(t)) = 5 - pm. The core of the randomized algo-
rithm design is by which distribution we generate s. It is easy
to imagine that different probability distributions will lead to
algorithms with different competitive ratios.

The probability distribution we choose is

eS

when s € [0, 1];

o THp”
F) = § 7=558(0),  when s = o0; )
0, otherwise.

We name this randomized algorithm as Randomized Economic
Dispatching for problem FS-PAEDX (RED-k). Its competitive
ratio can be computed by solving

Expected online cost
max " P s
o Optimal offline cost

SRecall that B pé“i“ /Pg i_s the ratio between the minimum grid price and
the unit cost of local generation.



ZHANG et al.: PEAK-AWARE ONLINE ECONOMIC DISPATCHING FOR MICROGRIDS 327

Fig. 1. An example of decomposing the demand into multiple layers and a
microscopic view of layer 3.

Theorem 2: With the distribution given by f*(s) in (4), the
competitive ratio of RED-k is given by

e
e—1+8°

and no other randomized online algorithm can achieve a
smaller competitive ratio.

Remark: (i) In the deterministic online algorithm, setting
s = 1 means that the microgrid will start to buy electricity
from the grid until the break-even condition is met. Similar to
the ski rental problem [13], the break-even point turns out to be
the best balance between being aggressive and conservative.
(i1) The vigilant readers may notice that f*(s) is the same
distribution that was adopted in solving the classic Bahncard
problem [14], which is indeed similar to problem FS-PAED¥
we study in this section. The basic version of FS-PAED*,
however, is different from Bahncard problem in the sense that
the discounted price (p.(t) in this paper) is time varying.

CR(RED—%) =

C. From Problem FS-PAEDF to Problem FS-PAED

In this section, we design deterministic and randomized
online algorithms for FS-PAED based on those of FS-PAEDF.

1) Net Demand Layering: Recall that e(t) is assumed to
take non-negative integer values. We divide the demand e(¢)
into multiple layers such that the demand of each layer in each
time slot is either 1 or 0, as shown in Fig. 1.

After layering, a bunch of sub-problems FS-PAED are
obtained, which can be solved by the online algorithms BED-k
or RED-k. However, unlike FS-PAEDk, the net demand of
FS-PAED in some time slots can exceed the capacity of local
generation, which makes it infeasible to ignore the whole pic-
ture while conquering each layer independently. For example,
suppose the generation capacity is 4 for the case shown in
Fig. 1. Even though the break-even points are not reached for
all the layers in time slot 2, it is infeasible to set uk(2) = 1 for
all the layers (A capacity of 5 is needed to do so). Thus by
taking into account the capacity constraint, we need to deter-
mine for which layers the demand should be satisfied by the
grid while still keeping the algorithm competitive.

An obvious but critical observation is that the demands
in the lower layers are denser than those in the upper lay-
ers. In addition, after being charged for the peak, we expect
more demands to come to enjoy the cheap grid electricity.
Consequently, it is always more economic to use the grid elec-
tricity to satisfy the denser demands, i.e., the lower layers.
In other words, in the proper algorithm design, the layers

Algorithm 1 BED: Optimal Deterministic Online Algorithm
for FS-PAED
Require: C.,p,,,pg.pe(1),e(1),c° =0
Ensure: u(t),v(t)
1: while t € 7 do
2. A threshold: ¢™ = max{c™ !, (e(r) — O)*}.
3:  For the layers below ¢7, )y =1, uk(x) =0
4:  For the layers above ¢, run BED-£ to obtain uk (tr) and

vk(r).
50 u(m) =Y uk (@), v(r) = Y vk (o)
6: T=1+1
7: end while

Algorithm 2 RED: Optimal Randomized Online Algorithm
for FS-PAED
Require: C.py.pg.pe(t).e(t).c° =0
Ensure: u(1),v(r)
1: while T € 7 do
2. A threshold: ¢™ = max{c™ !, (e(r) — O)*}.
3:  For the layers below ¢°, vk(r) =1, uk(r) =0
4 For the layers above ¢*, run RED-k with the same
randomized parameter s to obtain uk (1) and VA (7).
50 u(m) =Y uk (@), v(r) = 3 vk (o)
6: T=71+1
7: end while

e(t )A
5 By local
generator

By grid due to
Break-even point

By grid due to
capacity limitation

4
3
2
1

By grid because
using grid before

]

123456789t

Fig. 2. Demonstration of BED with C = 4, different colors denoting different
strategies of the algorithm.

below (e(f) — C)* should always be satisfied by the grid.
Meanwhile, for the layers above (e(f) — C)T, if the demand
is already satisfied by the grid, the online algorithm continues
to acquire the electricity from the grid; otherwise, Algorithm
BED-k or RED-« is applied with the same value s for all lay-
ers to obtain the sub-solutions. The solution is finally obtained
by combining the sub-solutions. We summarize the result-
ing deterministic and randomized online algorithms, named
as BED and RED, in Algorithms 1 and 2, respectively.

We show a toy example solved by BED to demonstrate
idea of layering approach in Fig. 2. In the example, we
consider a 9-slot horizon with demand in each slot being
1,5,3,2,4,2,1,2,3, respectively. The local capacity is 4,
DPg = 5,pe(t) = 2, and p,, = 8. For the subproblem in each
layer, the peak charge will be compensated by the cheaper grid
electricity if the total demand in that layer is larger than 2.
Given all inputs, the optimal offline solution uses only the
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grid for the subproblems with total demand larger than 2
(layer 1, 2 and 3) and uses only the local generators other-
wise (layer 4 and 5). The optimal offline cost is calculated
to be 79. For the online solution derived by BED, it uses
the local generator for the first two nonzero demands because
Y i1 (pg — pe(t)) < pm for T = 1,2 and switch to the grid
when extra demands come because Zle (pg —pe(t)) > py for
t > 3. It should also be noted that, in slot 2, the total demand
exceeds the total capacity, thus we have to use the grid to sat-
isfy that unit demand in the first layer. We use different colors
to demonstrate by which source and for what reason each unit
demand is satisfied in Fig. 2. By back-of-the-envelop calcula-
tion, the online cost is 94, and the ratio between the online cost
and offline optimal cost is 1.19 for this particular example.

Even though the example is simple, it demonstrates two
important and provable properties of BED: (i) For each layer,
it will continue to use the grid after it uses it once, and
(i) when one layer uses the grid, all the layers below it use
the grid too. The first property makes the solution and cost
structure similar to that of BED-k, while the second prop-
erty makes the peak of v(f) equal to the sum of the peaks
of vK(1), i.e., max, Dok VK@) = > max; vK(r). The two proper-
ties allow us to leverage the results in Section III-B to establish
the competitive ratios of BED and RED in Theorem 3.

Theorem 3: The competitive ratios of BED and RED are
given by

CR(BED) =2 — 8, and CR(RED) =

e—1+p8"
Further, no other deterministic and randomized online algo-
rithm can achieve smaller competitive ratios.

In the next subsection, we discuss an intriguing impact
of local generation capacity on the online algorithms’
performance.

D. Critical Local Generation Capacity

The peak-aware economic dispatching aims at minimizing
the sum of the peak charge (the term p,, max,c7 v(f) in (1))
and the volume charge (as the remaining part in (1)). The
local generator provides the microgrid an option to use more
expensive electricity (increase the volume charge) to reduce
the peak (decrease the peak charge). An optimal solution is
achieved with the best tradeoff between the two. Given an
input, there is a threshold C’, the demand below which should
be satisfied by the grid and above which by the local gen-
erator. C can be obtained by solving FS-PAED in an offline
fashion without considering capacity constraint. It means that
the optimal offline solution will not use the additional capacity
even if it is larger than C.

We now discuss the impact of increasing local genera-
tion capacity C on the performance of offline and online
algorithms. The offline algorithm will use full local capacity
until C reaches C, and it will not use local capacity fur-
ther beyond C. As such, one can expect that the operating
cost of the offline algorithm is non-increasing as C increases.
Meanwhile, the online algorithm, without knowing C and with
the tendency of reducing the peak with more expensive elec-
tricity, will try to exploit the whole capacity until it finds the
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break-even point, which turns out to be less economic and
deviates more from the optimal solution. As a result, for the
online algorithm, larger capacity may incur higher operating
cost. We provide a concrete case-study by real world traces to
confirm the above observation in Section IV.

Overall, we believe the above insights are important for
microgrid operators to (a) determine the amount of local gen-
eration to invest in order to maximize the economic benefit,
and (b) understand the importance of demand/generation pre-
diction when performing peak-aware economic dispatching in
microgrids.

IV. EXPERIMENTAL RESULTS

We carry out numerical experiments using real-world traces
to scrutinize the performance of our online algorithms under
various practical settings. Our purpose is to investigate (i) the
competitiveness of our online algorithms in comparison with
the optimal offline one, (ii) the necessity of peak-awareness in
economic dispatching of microgrids, and (iii) the performance
of online algorithms under various parameter settings. More
simulation results can be found in [9].

A. Experimental Setup

Electricity Demand and Renewable Generation Traces: We
set the length of one billing circle as one month. We use the
actual electricity demand of a college in San Francisco; its
yearly demand is about 154GWh [15]. We inject renewable
energy supply sources by a wind power trace of a nearby off-
shore wind station outside San Francisco with a total installed
capacity of 12MW [16]. We then construct the net demand
by subtracting the output level of the wind from the college
electricity demand.

Energy Source Parameters: The electricity price p.(f) and
peak price p, are set based on the tariffs from PG&E [6]
and p,, = 17.56$/KWh while the electricity rate p.(¢) varies
from 0.056$/KWh to 0.232$/KWh for off-, mid-, and on-peak
periods in different seasons. We set the unit cost of local gener-
ation p, according to the monthly price of natural gas. Notably,
the value of p, could be less than p,(7) for some on-peak inter-
vals. In such situations, generator plays its role not only by
cutting off the peak but also by providing cheaper electricity
as well. Finally, if not specified, the capacity of the local gen-
erator is set to be C = 15MWh, which is around 60% of the
peak net demand.

Cost Benchmark: We use the cost incurred by only procur-
ing electricity from the external grid, i.e., v(f) = e(f), as the
benchmark. We demonstrate cost reduction to show the ben-
efit of employing local generation units and the merits of our
algorithms. The cost reduction originates from the cheaper
electricity (in some on-peak intervals) and peak cut-off by
local generators.

Comparison of Algorithms: We compare our proposed
peak-aware online economic dispatching algorithms BED
and RED with (i) the optimal peak-aware offline solution
(PA-OFFLINE) to evaluate the performance of the online
algorithms, and (ii) the peak-oblivious online algorithms
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Fig. 3. Cost reduction for different seasons and the whole year.

(PO-Online) in [5] to investigate the importance of peak-
awareness.® We remark that both schemes in [4] and [5] are
peak-oblivious as they only consider volume charge but ignore
peak charge.

B. Benefits of Employing Local Generators

Purpose: The purpose of this experiment is two-fold. First,
compare the potential savings of microgrid in different sea-
sons, in which the demand pattern, the wind output, and the
cost parameters differ. Second, compare the cost reduction
of peak-aware algorithms against peak-oblivious ones. The
results are shown in Fig. 3.

Observations: The most notable observations from Fig. 3
are the following. First of all, the cost reduction varies over
seasons and the most significant one occurs in the summer.
This is because the gas price is lower and the grid electricity
price is higher in the summer than those of the other sea-
sons, thus employing local generators brings more benefit.
Second, the performance of our proposed BED is superior
than PO-Online algorithm. In particular, PO-Online cannot
reduce the cost in the winter, but our algorithm BED can still
achieve cost reduction. The reason is that, as p, > p. () always
holds in the winter, PO-Online algorithm always purchases
cheaper electricity from the gird, which gives no cost reduction
as compare to the benchmark strategy. In contrast, our BED
algorithm reduces the cost by exploiting (the expensive) local
generation to reduce the peak demand served by the external
grid, and consequently our algorithm can save operating cost.
On average, BED reduces the annual cost by 17.49%, while
PO-Online reduces the cost only by 9.08%. Third, the per-
formance of BED in practice is close to that of the offline
optimal.

C. Benefit of Prediction

Purpose: For the online algorithm design, predicting the
future is believed to be an effective mechanism to improve
the performance [17] and many prediction algorithm are pro-
posed [18], [19]. For the problem in this paper, the prediction
will help us to notice the break-even point earlier and thus
bring benefit. In this part, we evaluate how helpful prediction
is by changing the looking-ahead window A from 0 to 24
time slots (two days). We also compare its performance with

6We remark that in [5], the joint unit commitment and economic dispatching
problem in peak-oblivious manner is addressed and in this paper we compare
the economic dispatching part with our algorithms.

20

KT DD D DR RRRR
& —o—-
S
815
3
°
J5)
X1 -6 BED+Prediction
3 -B-RHC
© +>PA-Offline

5

0 20 40 60

Length of Looiking-ahead Window

Fig. 4. Cost reduction with different length of looking-ahead window.

N
=)

-5-PA-Offline
-H+BED
ES 20 PO-Online
S 2
g
32 £
I Ly
g
IS] 10
0
20 40 60 80 100

%

Fig. 5. Cost reduction vs different local capacities.
that of receding horizon control [20] algorithm (RHC) under
different A and the results are shown in Fig. 4.

Observation: As we can observe, the looking-ahead window
will increase the performance of RHC significantly, but for
our online algorithm BED, the cost reduction is not increased
so much, only from 17.49% to 18.23%. This result indicates
that predicting the near future contributes little to the overall
performance. The underlying logic is as follows, the differ-
ence between the online solution with prediction and that
without prediction only happens during the period (looking-
ahead window) before the ‘break-even point’, the length of
which is much smaller than that of the whole billing cycle. In
other words, the prediction will not change the online solu-
tions too much, thus the performance will almost remain the
same. The good news is that, the performance of RED is close
to optimal and the property of being insensitive to prediction
will not make it less attractive compared with other design,
like RHC.

D. The Performance of BED Under Different Local
Generation Capacities

Purpose: At first glance, one may imagine that larger local
generator leads to larger design space and thus larger cost
reduction is expected. However, as discussed in Section III-D,
this is not the case for online algorithms that do not have the
complete future knowledge of price and demand. We carry
out an experiment to verify and elaborate the observation. For
convenience, we define p = C/maxe(t) as the ratio of local
generation capacity over the peak net demand and change p
from 20% to 100%. The result is shown in Fig. 5. The exper-
iment in this part is carried out with the data from July (one
billing cycle).

Observations: The results for PA-OFFLINE and
PO-Online algorithms follow the intuition that more
local capacity brings more cost reduction. For BED, however,
we observe that the cost reduction increases when p increases
from 20% to 60%, and decreases as p continues to increase
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from 60% to 100%. As we discussed in Section III-D, there
exists a critical local generation capacity C beyond which the
peak charge and the overall cost will not decrease further. In
Fig. 6, we report the peak grid demand max v(f) in one month
versus p just for PA-OFFLINE algorithm. Results show that
the peak value of v(f) does not decrease as p increases from
60% to 100%, evincing that C is about 60% of the maximum
demand in this case. As discussed in Section III-D, C can
be computed by solving problem FS-PAED in an offline
manner.

However, the online algorithm, without knowing C and
with the tendency of reducing the peak charge by using more
expensive local generation, will try to exploit the entire local
generation capacity until the cost-benefit break-even point is
reached, which turns out to be less economic and deviate from
the offline optimal. As a result, for the online algorithm, larger
capacity may incur higher operating cost, as shown in Fig. 5.

This experiment, together with the discussions in
Section III-D, show that it is important for the micro-
grid operator to set the local generation capacity right at C to
cope with online algorithms to achieve maximum cost reduc-
tion. A possible way to set C is to use the historical data as the
input to the offline algorithm and obtain the critical capacity.

E. The Performance of RED

Purpose: In this part, we compare the empirical per-
formance of the deterministic online algorithm BED and
randomized online algorithm RED under different local capac-
ities. The cost of RED is computed by running the algorithm
1000 times and taking the average. The simulation result is
shown in Fig. 7.

Observations: Even though RED is better than BED in
terms of competitive ratio, it is not always the case empirically
because the competitive ratio only characterizes the perfor-
mance in the worst case. As we can see, when p is less than
80%, BED outperforms RED while the other way around if
p is larger than 80%. Furthermore, when p increases from
80% to 100%, the performance of BED degrades drastically,
while the cost reduction of RED almost remains the same.
This observation indicates that, to ensure that BED has good
performance, we need to carefully determine the local capacity
but additional local capacity will not harm RED much, which
can be viewed as another advantage of RED.

F. Empirical Evaluations Using Traces From a Real-World
Small-Scale Microgrid

Purpose: In this simulation, we replace the previous trace
with a new one, which is from a test-bed building at
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College of Engineering Center for Environmental Research
and Technology of UC Riverside and spans three months from
May to July. The building has 20 office rooms, 2 conference
rooms, one large open area with cubicles, and 7 other mis-
cellaneous rooms. The building HVAC system consists of 16
packaged rooftop units. In addition to its small scale, the build-
ing is connected to solar PV and several charging stations,
both of which introduce additional demand uncertainties. As
a result, the demand fluctuates more than the previous data set
we use. The simulation result is shown in Fig. 8.

Observations: On this new data set, the cost reduction is
more significant (at least 40% for the offline case) than the pre-
vious results and will increase with larger peak price p,,. This
result indicates that peak-aware scheduling is more beneficial
with more fluctuating demand and larger peak prices.

V. RELATED WORK

Microgrid is attracting substantial attention from both aca-
demic and industrial communities due to its economic and
environmental benefits, evidenced by a number of real-world
pilot microgrid projects [21].

With the penetration of renewable energy in microgrids,
conventional economic dispatching approaches based on accu-
rate demand prediction for power grid [3] are not applicable
as the local demand is highly uncertain and is hard to pre-
dict accurately. Online convex optimization [4] and Lyapunov
optimization [22] are popular approaches to design online
algorithms in face of uncertainty of future demand. In recent
years, competitive online algorithm design is advocated by
researchers to design online algorithms with strong worst-case
performance guarantee for power system operation. Examples
include the microgrid unit commitment and economic dis-
patching algorithm under the volume charging model [5],
EV charing algorithm [23], dynamic provisioning of data
centers [24], etc.
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TABLE I
COMPARISONS BETWEEN MOST RELATED LITERATURE ON MICROGRID ECONOMIC DISPATCHING
AND PEAK-CHARGING AWARE OPERATIONS IN POWER SYSTEM

Reference Topic Energy supply and storage Considering peak (demand) Relyjng on | With performance
components charge? prediction? guarantee?
[32] Climate control Grid Yes Yes No
[29] Demand response Grid and battery Yes Yes No
[30] Economic dispatching | Grid, local generator and battery Yes Yes No
[31] HVAC control Grid Yes Yes No
[33] Economic dispatching | Grid, local generator and battery No Yes No
[5] Economic dispatching Grid and local generator No No Yes
[34] Economic dispatching Grid and battery No No Yes
This work | Economic dispatching Grid and local generator Yes No Yes

The peak-based charging model has been considered in the
cost minimization problem for data centers in [8] and [25]
and for content delivery network in [26]. In the microgrid
scenario, distributed energy storage scheduling [27], demand
response [28]-[30], HVAC controlling for buildings [31], and
climate control for storage systems [32] are also studied
with peak-charging taken into consideration, assuming pre-
diction of future input with certain level accuracy. In contrast,
we design competitive online algorithms that does not rely
on prediction of future input and achieves strong worst-case
performance guarantee. We summarize the main differences
between existing literatures and our work in Table I.

The special case FS-PAED of the economic dispatching
problem in this paper can be considered as a generaliza-
tion of the classic Bahncard problem [14], in the sense that
the ‘discounted price’ is time-varying. The Bahncard problem
and its solutions have also found application in the instance
acquisition problem of cloud computing [35].

VI. CONCLUSION

In this paper, we devised online economic dispatching algo-
rithms for microgrids, with peak charging model taken into
account. We developed both deterministic and randomized
online algorithms with best possible competitive ratios fol-
lowing a divide-and-conquer approach. In addition to sound
theoretical performance guarantees, the empirical evaluations
based on real-world traces also corroborated our claim on the
importance of peak-awareness in scheduling and the merit of
our algorithms.

Demand response and energy storage management can be
used to effectively “shave the peak” of the demand so that the
peak-charging can be reduced. Our work and algorithm are
orthogonal to demand response and energy storage manage-
ment, in the sense that we focus on orchestrating the local and
external supply to further cut short the peak-charging. Thus
one can apply demand response, energy storage management,
and our algorithm to reduce the peak-charging by optimizing
both the demand and supply.

An interesting future direction is to study the microgrid eco-
nomic dispatching problem under accurate or noisy prediction
of future demand and renewable generation, and characterize
the averaged performances with respect to different stochas-
tic patterns. Furthermore, it also deserves effort to extend the
results in this paper to the scenarios with heterogeneous local

generators and to the settings considering demand response
and energy storage systems.

APPENDIX
A. A Proposition to Prove Theorem I and 2

To facilitate our analysis, we provide Proposition 1 to char-
acterizes the ratio between the online cost and the offline
optimal cost with respect to different s and o. Recall that
different s and o characterize different online algorithms and
inputs.

Proposition 1: The ratio between the cost of a deterministic
online algorithm with parameter s and the offline optimal cost,
denoted by h(Ajy, o), is given by:
when o < 1,

1 if s >0
h(As,0)=1" ’ 5
(As. @) 1+ %(1 — B), otherwise; )
when o > 1,
(c=H{1-B) :
WA _ + GonpEr if s > o, 6)
(As, 0) 1 s(1—p) h . (
—+ m, otherwise.

Proof: We denote the number of time slots with demand 1
by T, and the number of time slot using the local genera-
tor according to the online algorithm by 7°. The following
relations are used in the derivation.

T

opn =Y (g —pe®) = T(p—pI™) ()
=1

T3

> (g — pe®)) < spm (7b)

t=1

We compute the ratios in the following different cases.

> Case I (o < 1): The optimal offline solution is always
using the local generator and the cost is Costofr = Tp,.

Case 1.1 (s > o): In this case, the online algorithm will
not turn to the grid before the input ends. Therefore, the
online cost is exactly the same as the offline cost, thereby the
ratio is 1.

Case 1.2 (s < o): It turns out that there is a critical time
slot 7°¢ that for all 1 < ¢ < T%, the online algorithm uses the
local generator and for time slots 7° < ¢ < T, it turns to the
grid, thereby we have Coston = T*pg + Zi; £1Pe(D) + P
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Hence, we get the following ratio:

Tspg + Z;Z;SJFI DPe(t) + pm

R(s,2) =
Tp,
1 Zimi e = pe®) = YT1 (g = pe(®) + pm
Tp,
(El)
1+ -0+ s)—
Tpg
(ESZ) 1+ l—0+sp,— pg““
o Pe
I—z+s
=14+——0-5)

Inequality (E7) is due to (7a), (7b) and (E3) is due to the

fact that zp,, = Z(pg —pe(®) < T(pg —Pgﬂn)
> Case 2 (o0 > 1): The optimal offline solution is
always acquiring the electricity from the grid and the cost

is Costoft = Y pe(®) + pim.

Case 2.1 (s > o): In this case, the online algorithm
always uses the local generator and thus the online cost is
Coston = Tp,. Hence, the ratio is as follows:

Tpg
Y Pe(®) + P
X P + P+ Y (g — Pe(®) = P
Y1 pe(®) + P
- l)pm
TP?‘i“ + Pm

(-1

in T
plgllllﬁ + 1

(o —1)

R(s,z) =

(lis) | (o

(Eq)
<

P S 1
(c —hHd-pB)
(0 — DB+ 1

Inequality (E3) 1s by pe(t) > pmm and op, = Zszl(Pg —

pe(1)); (E4) is by L o = [’mem, which comes from (7a); we
m 8§ Ve

have the last equality (Es5) by substituting 8 =

Case 2.2 (s < o): Like case 1.2 here we haf/e T > T°.
Therefore, the online algorithm uses the local generator for
the first 7° time slots and turns to the grid afterwards. In this
case, the online cost is Costoy = T%pg + Zz%H Pe(®) + P,
and the ratio is

(Es)

min

Pe

Tspg + Z:Z;»Ur] De(t) + pm
Y1 Pe(®) + P
M
Zt 1 Pe @) + pm
SPm
+ —
Tprenm +pm

R(z,s) =

(E7)
2+

min a
pe’ p pmm + ]
s(1 —p)
(c-=Dp+1

W4
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Fig. 9. Competitive ratio of Ay as a function of s, with g = 0.3.

Inequallty (Eg) is by pe(t) > p“““ and (7b); (E7) is by
> g which comes from (7a); (Eg) is obtained by

pm —_ p pmm ’
mm

substituting g =
The proof is completed |

B. Proof of Theorem 1

Proof: The best deterministic online algorithm with smallest
CR can be obtained by solving

minmax h( Ay, o). ®)

The problem is non-convex and thus challenging on the first
sight. However, given a deterministic online algorithm A, it
turns out the worst cost ratio is obtained when o = s, in which
case the online algorithm pays for the peak-charge premium
but there is no net demand to serve anymore. This can also be
obtained by studying the property of h(As, ). Thus we have

1+ 1(1—/3)
s(1—
L+ G2paeT

ifs <1,

otherwise.

max h(A, o) = h(Ay, s) =

Leveraging this observation, the problem in (8) can be solved
easily by studying the extreme points of the two functions
To visualize how the competitive ratio varies as s changes,
we plot the competitive ratio for different values of s in Fig. 9
for the case where 8 = 0.3. |

C. Proof of Theorem 2
Proof: Recall that

5

when s € [0, 1];

e—1+p8"°
o) =1 = ff+ﬁ5(0) when s = 00;
0, otherwise.
When o < 1,

S‘

1

/l es ,3
+ ds +
s e—1+p8 e—14+p

fh(s o)f*(s)ds —/ (1 + (1 -B)—————

:8 1 &
= — 4+ —ds
€—1+/3 0 e—]—l—ﬁ
°1—0+s e
+/ I - ——s
0 o2 —1+,3

Tl _g+s &
_1+/0 U= 1
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1—
=1+—’3
e—1+p
_ e
Ce—14+8

When o > 1,
/h(s, o)f*(s)ds

B 11 1—<7+s1 e’ d
—fo(+T< ‘ﬂ))ms

o eS
+/] e—l—l—ﬁds
" (1+ (U—l)(l—ﬁ)) B

(c—Dp+1 Je—14+8
B 1 1—-58 _
b gy sy by Sy AU
_ 1-p
B e—14+p8
_ e
Ce—148

We observe that the value of fA h(s, o)f*(s)ds has nothing
to do with o, then

IIanX'/;h(S, O’)f*(S)dS = ﬁ

Next we will provide Lemma 2 to prove that no other ran-
domized online algorithm can achieve a smaller competitive
ratio. |

Lemma 2: For any randomized online algorithm Ay for
problem FS-PAEDk, we have

e
CR(Ay) > ppy a3

Proof: The idea is to choose a randomized input, denoted
by g(o), and compute the ratio between the online cost and
offline optimal cost by the best deterministic online algorithm
for this input. Yao’s Principle [36] says that the computed ratio
is a lower bound for any randomized online algorithm. The
particular distribution we use is given by

* _1e oe 7,
gho) = 1tF .
—i7pllc — DB+ 1le™?, otherwise.

When s < 1,

/ h(s, 0)g*(o)do

s 1 _
= / g (0)do +/ (1 + g)g*(a)da
0 s

+ inf S(l _ﬁ) .
+/1 (“’ (o—1>ﬂ+1>g (7)o
L, 1B

e—14+p8

1 + inf
. / 1—0+s5)e %dz+ / se %do
K 1

ecd=F)

e—14+p8
e

e—1+p

when o € [0, 1],

€))

=1+
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When s > 1,

1
/h(s,a)g*(a)da =/ g (o)do
o 0

S @ —DA=P) ,
+/1 (H CESES >g (@)do

+ inf S(l —,3) .
+ (1 "o 1)ﬁ+1>g (7)o

_ e(l —p)
_1+e—1+,3

K + inf
. / (0 — e %do —I—/ se %do
1 K

ed=F)

e— 148
e

e—14+p

=14+

Similarly, the value of [ h(s, 0)g*(0')do has nothing to do
with s, then

. . e
mS1n|:/U h(s,o)g (a)do] =._118 5

Then we can establish Lemma 2 and the proof for
Theorem 2 is completed. |

D. Proof of Theorem 3

Proof: Firstly, if some energy demands of the input exceed
the capacity constraints, we can construct a new input by
sequently removing the demand exceeding the capacity and
the following demands in the same layer (like the first layer
from time slot 2 in Fig. 2). Then compared with the original
input, the online cost and offline cost are reduced by the same
amount, which will lead to a larger competitive ratio. Then
we only need to focus on the input whose demand is always
smaller than the capacity.

Furthermore, due to the two properties of the algorithm
described in the paragraph before Theorem 3, we can have

ko v u(n) = Y uk ()
max; y_, v¥(f) = >, max,v*(r), and =3, Ao
Cost(u,v) = ), Cost(u*, v¥). This property still holds for
the offline cost. We denote 7 as the competitive ratio for each
layer, meaning

Then

Cost(u*, v*) < 7Costt;, VK.
Then by summing the above inequality over k, we can have
Cost(u, v) < FCostoft.

For BED, ¥ = 2 — B and for RED, 7 = m for the
randomized case, which establish the upper bound of the
competitive ratios.

Furthermore, note that FS-PAEDF is a special case of
FS-PAED. Since we cannot obtain smaller competitive ratios
for FS-PAED¥, we cannot obtain smaller competitive ratios
for FS-PAED.

The proof for Theorem 3 is completed. |
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