Competitive Energy Generation Scheduling in Microgrids

Minghua Chen http://www.ie.cuhk.edu.hk/~mhchen

Project website:

https://staff.ie.cuhk.edu.hk/~mhchen/projects/chase.microgrids.h tml

Department of Information Engineering

The Chinese University of Hong Kong

Microgrid: A New Paradigm

- ☐ Microgrid is a distributed power system that satisfies heat and electricity demand with two sources of supply:
 - External electricity and heat supply
 - Local generation (renewable, combined heat and power(CHP))

A Key Problem in Microgrid Operation

□ *Real-time* balancing supply and demand with minimum cost

- Electricity cannot be stored cheaply, yet

Picture source: Lawrence Berkeley National Laboratory, 2007.

3

Microgrid Demands Are Difficult to Predict: Prior Approaches Fail

- □ Prior assumption:
 - Demand is predictable
- Local (net) demands are difficult to predict
 - Net electricity demand inherits uncertainty from wind and solar
 - Electricity and heat demands express different uncertainty pattern

Our Contributions

CHASE – Competitive Heuristic Algorithms for Scheduling Energy-generation

Case Study based on Real-world Traces

5

CHASE Leads to 20% Cost Saving

Benefit of Looking Ahead

- ☐ CHASE save 20% cost even without look-ahead
- ☐ CHASE is robust to prediction error

Conclusion

- ☐ We propose **CHASE**: a paradigm-shift solution for energy generation scheduling in microgrids
 - Does not rely on demand prediction
 - Achieves the provably best competitive ratio without look-ahead
 - Performance improves with look-ahead
 - Leads to 20% cost reduction in case studies

9