
Watershed moment

Bell: telephone

1876

Tesla: multi-phase AC

1888 both started as natural monopolies
both provided a single commodity
both grew rapidly through two WWs

1980-90s

1980-90s

deregulation
started

deregulation
started

Energy network will undergo similar architectural
transformation that phone network went through
in the last two decades to become the world’s
largest and most complex IoT

IoT

1969: DARPAnet
convergence

to Internet



They consume the most energy
n Consume 2/3 of all energy in US (2014)

They emit the most greenhouse gases
n Emit >1/2 of all greenhouse gases in US (2014)

To drastically reduce greenhouse gases
n Generate electricity from renewable sources
n Electrify transportation

Source: 
USEPA

Electricity gen & transportation



DoE SETO 2030 cost target (unsubsidized cost in location with avg US solar resources):
• Utility-scale PV: 3c / kWh  
• Commercial rooftop PV: 4c / kWh
• Residential rooftop PV: 5c / kWh
• Concentrating solar power w storage: 5c / kWh





Autonomous energy grid

Computational challenge
n nonlinear models, nonconvex optimization

Scalability challenge
n billions of intelligent DERs

Increased volatility
n in supply, demand, voltage, frequency

Limited sensing and control
n design of/constraint from cyber topology

Incomplete or unreliable data
n local state estimation & system identification

Data-driven modeling and control
n real-time at scale

many other important problems, inc. economic, regulatory, social, ...

Ben	Kroposki,	2007		https://www.nrel.gov/grid/autonomous-energy.html



Outline
Relaxations of AC OPF

n Dealing with nonconvexity

Realtime AC OPF
n Dealing with volatility

Optimal placement
n Dealing with limited sensing/control



Relaxations of AC OPF
dealing with nonconvexity

Low, Convex relaxation of OPF, 2014
http://netlab.caltech.edu

Bose (UIUC) Chandy Farivar (Google) Gan (FB) Lavaei (UCB)

many others at & outside Caltech …

Li (Harvard)



Optimal power flow (OPF)

OPF is solved routinely for
n network control & optimization decisions
n market operations & pricing
n at timescales of mins, hours, days, …

Non-convex and hard to solve
n Huge literature since 1962
n Common practice: DC power flow (LP)
n Also: Newton-Raphson, interior point, …

min  c(x)    s. t.    F(x) = 0,  x ≤ x



Optimal power flow

• describes network topology and impedances

• is net power injection (generation) at node j

Yj
H

sj

min              tr CVV H( )
over             V, s, l( )
subject to     sj  =  tr Yj

HVV H( )
                    l jk  =  tr Bjk

HVV H( )
                    s j   ≤   sj  ≤   s j

                     l jk  ≤  l jk  ≤  ljk  

                    V j  ≤  |Vj |  ≤   V j

power flow equation

gen cost, power loss

line flow 

injection limits

line limits

voltage limits



Optimal power flow
min              tr CVV H( )
over             V, s, l( )
subject to     sj  =  tr Yj

HVV H( )
                    l jk  =  tr Bjk

HVV H( )
                    s j   ≤   sj  ≤   s j

                     l jk  ≤  l jk  ≤  ljk  

                    V j  ≤  |Vj |  ≤   V j

power flow equation

gen cost, power loss

line flow 

injection limits

line limits

voltage limits

nonconvex feasible set (nonconvex QCQP)
• not Hermitian (nor positive semidefinite)
• is positive semidefinite (and Hermitian)
Yj

H

C



Optimal power flow

Multiple solutions

11/66

Ian Hiskens, Michigan

OPF problem underlies numerous applications
• nonlinearity of power flow equations è nonconvexity



Dealing with nonconvexity

Linearization
n DC approximation

Convex relaxations
n Semidefinite relaxation (Lasserre hierarchy)
n QC relaxation (van Hentenryck)
n Strong SOCP (Sun)



min            tr CW

subject to   s j ≤ tr Yj
HW( ) ≤ s j         v j ≤Wjj ≤ vj

                  W ≥ 0,   rank W =1

Equivalent problem: 

Equivalent feasible sets

convex in W
except this constraint

quadratic in V
linear in W 

min            tr CVV H

subject to   s j ≤  tr Yj
HVV H( )  ≤  s j      v j ≤  |Vj |2  ≤  vj

26

(a) (b)

graphs are computed in advance for each case using the algorithm in [45]. R2 is faster than both

R1 and Rch, but yields an infeasible solution for most IEEE benchmark systems considered.

TABLE II: Comparing objective values and running times on IEEE systems

Test case Objective value Running times

R1, Rch R2 R1 Rch R2

9 bus 5297.4 5297.4 0.2 0.2 0.2

14 bus 8081.7 8075.3 0.2 0.2 0.2

30 bus 574.5 573.6 0.4 0.3 0.3

39 bus 41889.1 41881.5 0.7 0.3 0.3

57 bus 41738.3 41712.0 1.3 0.5 0.3

118 bus 129668.6 129372.4 6.9 0.7 0.6

300 bus 720031.0 719006.5 109.4 2.9 1.8

2383 bus 1840270 1789500.0 - 1005.6 155.3

VI. CONCLUSION

TBD

(Bose says: I think it’s better to talk about this in the conclusion.) (Steven says: Summary

about specific relaxations: SDP = chordal tighter than SOCP; BFM = BIM, SOCP in BFM =

SOCP in BIM; equivalence of feasible sets. Or summarize these in Conclusion section?)

May 31, 2013 DRAFT

X̂ (SDP)

X̂ (SOCP)

X
x̂* = x*



Solution strategy

relaxation:    min
x̂∈X+

 f x̂( )

OPF:            min
x∈X

 f x( )

If optimal solution      satisfies easily checkable conditions, 
then optimal solution      of OPF can be recovered  

x̂*
x*



Equivalent relaxations

W+ WG
+

V W WG

For radial networks: always solve SOCP !

Theorem
n Radial G: SOCP is equivalent to SDP (          )
n Mesh G: SOCP is strictly coarser than SDP

V⊆W+ ≅WG
+



Exact relaxation

For radial networks, sufficient conditions on
n power injections bounds, or 
n voltage upper bounds, or
n phase angle bounds



Exact relaxation

graph of QCQP

G C,Ck( )   has edge (i, j)   ⇔

Cij ≠ 0  or  Ck[ ]ij ≠ 0  for some k     

QCQP

QCQP over tree
G C,Ck( )   is a tree

C,Ck( )
min          tr CxxH( )
over         x ∈Cn

s.t.            tr Ckxx
H( )  ≤   bk         k ∈ K     



Exact relaxation

min          tr CxxH( )
over         x ∈Cn

s.t.            tr Ckxx
H( )  ≤   bk         k ∈ K     

Key condition
i ~ j :   Cij, Ck[ ]ij ,  ∀k( )  lie on half-plane through 0

QCQP C,Ck( )

Theorem

SOCP relaxation is exact for 
QCQP over tree 

Re

Im

Bose et al 2012, 2014
Sojoudi, Lavaei 2013



Implication on OPF

IEEE TRANS. ON CONTROL OF NETWORK SYSTEMS, 2014 5

[Y j] jk = �1
2
(b jk + ig jk)

[Yk] jk = �1
2
(b jk � ig jk)

as well as the angles of �[F j] jk,�[Fk] jk and
�[Y j] jk,�[Yk] jk. These quantities are shown in Figure
1 with their magnitudes normalized to a common value and
explained in the caption of the figure.

Φ j
"# $% jk

Re

Im

− Φ j
#$ %& jk

Φk[ ] jk

− Φk[ ] jk

Ψ j
"# $% jk − Ψ k[ ] jk

Ψ k[ ] jk − Ψ j
#$ %& jk

lower)bounds)
on))pj,qj, pk,qk

α jk

[C0 ] jk

upper)bounds)
on))pj,qj, pk,qk

Fig. 1: Condition A2’ on a line ( j,k) 2 E. The quantities
([F j] jk, [Fk] jk, [Y j] jk, [Yk] jk) on the left-half plane corre-
spond to finite upper bounds on (p j, pk,q j,qk) in (16a)–
(16b); (�[F j] jk,�[Fk] jk,�[Y j] jk,�[Yk] jk) on the right-half
plane correspond to finite lower bounds on (p j, pk,q j,qk).
A2’ is satisfied if there is a line through the origin, specified
by the angle a jk, so that the quantities corresponding to
finite upper or lower bounds on (p j, pk,q j,qk) lie on one
side of the line, possibly on the line itself. The load over-
satisfaction condition in [25], [29] corresponds to the Im-
axis that excludes all quantities on the right-half plane. The
sufficient condition in [28, Theorem 2] corresponds to the
red line in the figure that allows a finite lower bound on the
real power at one end of the line, i.e. p j or pk but not both,
and no finite lower bound on reactive power q j.

Condition A2 applied to OPF (16) takes the following form
(see Figure 1):
A2’: For each link ( j,k) 2 E there is a line in the complex

plane through the origin such that [C0] jk as well as
those ±[Fi] jk and ±[Yi] jk corresponding to finite lower
or upper bounds on (pi,qi), for i = j,k, are all on one
side of the line, possibly on the line itself.

Let Copt and Csocp denote the optimal values of OPF (2) and
OPF-socp (7) respectively.

Corollary 3: Suppose G is a tree and A2’ holds.
1) Copt =Csocp. Moreover an optimal solution V opt of OPF

(2) can be recovered from every optimal solution W socp
G

of OPF-socp (7).
2) If, in addition, A1 holds then OPF-socp (7) is exact.

It is clear from Figure 1 that condition A2’ cannot be satis-
fied if there is a line where both the real and reactive power
injections at both ends are both lower and upper bounded
(8 combinations as shown in the figure). A2’ requires that
some of them be unconstrained even though in practice they
are always bounded. It should be interpreted as requiring
that the optimal solutions obtained by ignoring these bounds
turn out to satisfy these bounds. This is generally different
from solving the optimization with these constraints but
requiring that they be inactive (strictly within these bounds)
at optimality, unless the cost function is strictly convex. The
result proved in [26] also includes constraints on real branch
power flows and line losses. Corollary 3 includes several
sufficient conditions in the literature for exact relaxation as
special cases; see the caption of Figure 1.

Corollary 3 also implies a result first proved in [16], using
a different technique, that SOCP relaxation is exact in BFM
for radial networks when there are no lower bounds on power
injections s j. The argument in [16] is generalized in [17, Part
I] to the case with convex objective functions, shunt elements,
and line limits in terms of upper bounds on ` jk. Assume

A3: The cost function C(x) is convex, strictly increasing
in `, nondecreasing in s = (p,q), and independent of
branch flows S = (P,Q).

A4: For j 2 N+, s j =�•� i•.

Popular cost functions in the literature include active power
loss over the network or active power generations, both of
which satisfy A3. The next result is proved in [16], [17].

Theorem 4: Suppose G̃ is a tree and A3–A4 hold. Then
OPF-socp (13) is exact.

Remark 2: If the cost function C(x) in A3 is only nonde-
creasing, rather than strictly increasing, in `, then A3–A4
still guarantee that all optimal solutions of OPF (10) are
(i.e., can be mapped to) optimal solutions of OPF-socp (13),
but OPF-socp may have an optimal solution that maintains
strict inequalities in (11c) and hence is infeasible for OPF.
Even though OPF-socp is not exact in this case, the proof of
Theorem 4 constructs from it an optimal solution of OPF.

B. Voltage upper bounds

While type A conditions (A2’ and A4 in the last sub-
section) require that some power injection constraints not be
binding, type B conditions require non-binding voltage upper
bounds. They are proved in [31], [32], [33], [34] using BFM.

For radial networks the model originally proposed in [18],
which is (11) with the inequalities in (11c) replaced by
equalities, is exact. This is because the cycle condition (12)
is always satisfied as the reduced incidence matrix B is n⇥n
and invertible for radial networks. Following [34] we adopt
the graph orientation where every link points towards node

Not both lower & upper bounds on real & reactive powers at both ends 
of a line can be finite 



Example
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(a) (b)

graphs are computed in advance for each case using the algorithm in [45]. R2 is faster than both

R1 and Rch, but yields an infeasible solution for most IEEE benchmark systems considered.

TABLE II: Comparing objective values and running times on IEEE systems

Test case Objective value Running times

R1, Rch R2 R1 Rch R2

9 bus 5297.4 5297.4 0.2 0.2 0.2

14 bus 8081.7 8075.3 0.2 0.2 0.2

30 bus 574.5 573.6 0.4 0.3 0.3

39 bus 41889.1 41881.5 0.7 0.3 0.3

57 bus 41738.3 41712.0 1.3 0.5 0.3

118 bus 129668.6 129372.4 6.9 0.7 0.6

300 bus 720031.0 719006.5 109.4 2.9 1.8

2383 bus 1840270 1789500.0 - 1005.6 155.3

VI. CONCLUSION

TBD

(Bose says: I think it’s better to talk about this in the conclusion.) (Steven says: Summary

about specific relaxations: SDP = chordal tighter than SOCP; BFM = BIM, SOCP in BFM =

SOCP in BIM; equivalence of feasible sets. Or summarize these in Conclusion section?)

May 31, 2013 DRAFT
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(a) (b)

Fig. 4: Projections of feasible regions on p1 � p2 space for 3-bus system in (3).

P1

P
2

0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49

0.48

0.49

0.5

0.51

0.52

0.53

0.54

h1(F+
2 )

h1(F+
1 )

h1(F1) = h1(F2)

Fig. 5: Zoomed in Pareto fronts of the 3-bus case in p1 � p2 space.

B. IEEE benchmark systems

For IEEE benchmark systems [35], [42], we solve R1, R2 and Rch in MATLAB using CVX

[43] with the solver SeDuMi [44]. The objective values and running times are presented in

Table II. As in Theorem 1, the problems R1 and Rch have the same objective function value,

i.e., r
⇤
1 = r

⇤
ch

. However, the optimal objective value of R2 is lower, i.e., r
⇤
2 < r

⇤
1. For IEEE

benchmark systems, note that R1 and Rch are exact [14]–[16], while R2 is not. As evidenced

by the running times in Table II, Rch is much faster than R1. The chordal extension of the

May 31, 2013 DRAFT

power flow
solution X

SDP Y
SOCP Y

Real Power Reactive Power

• Relaxation is exact if X and Y have same 
Pareto front

• SOCP is faster but coarser than SDP

Bose, Low, Teeraratkul, Hassibi TAC 2015



Fig. 1: J(Xk) vs # of Iterations (Bisection Method) (a) 3-Bus Example (b) 5-Bus Example, (c) Modified IEEE 14 Bus Example (14B)

optimal point (Column 3) typically in a small number of iter-
ations (Column 4). Thus the optimal cost for the semidefinite
relaxation, J�, is in fact equal to the optimal cost of the OPF
problem. Moreover, the rank-one solution returned from the
linearization-minimization algorithm can be used to construct
an optimal solution for the non-convex OPF problem. These
results verify that primal/dual solvers will fail to return rank-
one optimal solutions for the naive semidefinite relaxation
even when such solutions exist (c.f. Theorem 2.1). The values
of J in the last column denote the upper bound on the
optimal cost of the OPF problem given by the non-convex
solver MATPOWER [3]. The last result in Table III is of
particular interest. This example is a modified IEEE 14
Bus system (14A) for which the linearization-minimization
algorithm yields a rank-one globally optimal solution with
a cost 12.4% lower than the sub-optimal solution obtained
with MATPOWER. This example was constructed from the
standard IEEE 14 Bus test case [22] by tightening a subset
of the line capacity constraints. A precise description can be
found in [23].

TABLE III: Power system examples with hidden rank-one opti-
mal solutions. Precise systems descriptions can be
obtained from (9 bus [24]), (30 bus [25]) (118 bus
[22]), (14A bus [23]).

Syst. rank(X0) rank(X0) Iter. J� J

9 8 1 3 5296.7 5296.7
30 9 1 3 576.9 576.9
118 236 1 100 129661 129661

14A 26 1 3 8092.8 9093.8

B. Alternating-Bisection Method

For certain problems, the linearization-minimization al-
gorithm fails to uncover a rank-one point in F – i.e.
rank(X0) > 1. In such cases, one of two scenarios could
be at play. Either the optimal face F of the semidefinite
relaxation does not possess a rank-one matrix or the rank
minimization heuristic may simply fail in recovering a rank-
one points in F when they do in fact exist. Table IV
provides three representative examples of such cases. For
each example, the rank minimization heuristic is able to
find a lower rank matrix (on F) than that achieved by the

naive semidefinite relaxation. However, the iteration does
not converge to a rank-one solution. In each case there is a
non-zero gap between the cost achieved for the semidefinite
relaxation, J�, and the MATPOWER upper bound obtained
for the original OPF problem, J .

The alternating bisection-minimization method is applied to
the cases in Table IV. Figure 1 depicts the cost of a feasible
point produced at every step of the bisection for the examples
considered in Table IV. The red diamonds denote the iterates
achieving rank-one feasible points, while the black circles
denote iterates corresponding to high rank feasible points.
We observe in Figure 1, that in the case of the three and
five bus examples, the minimum cost obtained by a rank-
one feasible point through bisection coincides with the cost
produced by MATPOWER. This may lead one to believe
that the optimal face F of the semidefinite relaxation may
not admit a rank-one feasible point. On the other hand, for
the modified IEEE 14 Bus example (14B), the proposed
bisection-minimization heuristic obtains a rank-one feasible
point that yields a substantially lower cost than the upper
bound J obtained from MATPOWER. More precisely, the
minimum cost rank-one point derived from the alternating
bisection-minimization method is within 0.1266% of the
relaxed lower bound J�, as compared to 4.8326% for the
MATPOWER solution. We refer the reader to Remark 6 for
a discussion on the role of mild constraint relaxations in
deriving nearly optimal rank-one solutions.

To summarize, we observe that in many cases the iterative
linearization-minimization algorithm successfully uncovers a
hidden rank-one point that is also globally optimal for the
original OPF problem. If the rank minimization algorithm
fails to uncover a rank-one optimal point, then the alternating
bisection-minimization method can be applied. In this case,
a rank-one feasible solution is obtained that yields a cost
that is no greater than that achieved by MATPOWER – and
for certain systems, achieves a substantially lower cost than
MATPOWER.

V. CONCLUSION AND FUTURE DIRECTIONS

This paper considered the non-convex Optimal Power Flow
(OPF) problem and the corresponding semidefinite relax-
ation. For certain power systems and cost structures, the
naive semidefinite relaxation may fail to yield low rank

SDP	
cost	

MATPOWER	
cost	

IEEE test 
systems

12.4%	lower	cost	than	solution	from	
nonlinear	solver	MATPOWER

Potential benefits

[Louca, Seiler, Bitar 2013]



Potential benefits
Case study on an SCE feeder

n Southern California
n 1,400 residential houses, ~200 commercial buildings
n Controllable loads: EV, pool pumps, HVAC, PV inverters
n Formulated as an OPF problem, multiphase unbalanced radial 

network

optimizedbaseline

peak load reduction: 8%
energy cost reduction: 4%



Dvijotham (DeepMind)

Realtime AC OPF
for tracking

Gan (FB) Tang (Caltech)

Gan & L, JSAC 2016
Tang et al, TSG 2017

See also: Dall’Anese et al, Bernstein et al, 
Hug & Dorfler et al, Callaway et al



Literature

Static OPF:
o Gan and Low, JSAC 2016
o Dall’Anese, Dhople and Giannakis, TPS 2016
o Arnold et al, TPS 2016
o A. Hauswirth, et al, Allerton 2016

Time-varying OPF:
o Dall’Anese and Simonetto, TSG 2016
o Wang et al, TPS 2016
o Tang, Dvijotham and Low, TSG 2017
o Tang and Low, CDC 2017

Earlier relevant work on voltage control
o Survey: Molzahn et al, TSG 2017



OPF

power flow equations

min    c0 (y)+ c(x)
over   x,  y
s. t.    F(x, y) = 0
         y ≤ y
         x ∈ X  := x ≤ x ≤ x{ }

operational constraints

capacity limitscontrollable 
devices

uncontrollable
state



OPF

power flow equations

min    c0 (y)+ c(x)
over   x,  y
s. t.    F(x, y) = 0
         y ≤ y
         x ∈ X  := x ≤ x ≤ x{ }

operational constraints

capacity limits



OPF

power flow equations

min    c0 (y)+ c(x)
over   x,  y
s. t.    F(x, y) = 0
         y ≤ y
         x ∈ X  := x ≤ x ≤ x{ }

operational constraints

capacity limits

Assume:  ∂F
∂y

≠ 0        ⇒       y(x)   over  X



OPF

min
x

   c0 (y(x))+ c(x)

s. t.    y(x) ≤ y
         x ∈ X  := x ≤ x ≤ x{ }

Theorem [Huang, Wu, Wang, & Zhao. TPS 2016]
For DistFlow model, controllable (feasible) region

is convex (despite nonlinearity of y(x))
x y(x) ≤ y, x ∈ X{ }



Static OPF

x(t +1)  =  x(t)−η ∂f
∂x

(t)
#

$%
&

'(X
y(t)       =   y(x(t))

gradient projection algorithm:

active control

law of physics

min      f (x, y(x);  µ)
over     x ∈ X

[Gan & Low, JSAC 2016]



Online (feedback) perspective

Network:  power flow solver
    y(t) : F(x(t),  y(t)) = 0

DER : gradient update
x(t+1) = G(x(t),  y(t))

control
x(t)

measurement,
communication

y(t)

physical 
network

cyber 
network

• Explicitly exploits network as power flow solver
• Naturally tracks changing network conditions



Drifting OPF

min
x

   c0 (y(x))+ c(x)

s. t.    y(x) ≤ y
         x ∈ X

min
x

   c0 (y(x),γ t )+ c(x,γ t )

s. t.    y(x,γ t ) ≤ y
         x ∈ X

drifting 
OPF

static
OPF



Drifting OPF

min      ft (x, y(x);  µt )
over     x ∈ Xt

x(t +1)  =  x(t) −  η H (t)( )−1 ∂ft
∂x

(x(t))
#

$%
&

'(Xt
y(t)       =   y(x(t))

active control

law of physics

Quasi-Newton algorithm:

[Tang, Dj & Low, 2017]



Tracking performance

Theorem

error :=      1
T

xonline (t)− x*(t)
t=1

T

∑

error  ≤   λM
λm

⋅
ε

1−ε
⋅

1
T

x*(t)− x*(t −1) +Δt( )
t=1

T

∑

avg rate of drifting

control error



Tracking performance

Theorem

error :=      1
T

xonline (t)− x*(t)
t=1

T

∑

error  ≤   ε
λM / λm −ε

⋅
1
T

x*(t)− x*(t −1) +Δt( )
t=1

T

∑ +δ

avg rate of drifting
• of optimal solution
• of feasible injections



Tracking performance

Theorem

error :=      1
T

xonline (t)− x*(t)
t=1

T

∑

error  ≤   ε
λM / λm −ε

⋅
1
T

x*(t)− x*(t −1) +Δt( )
t=1

T

∑ +δ

error in Hessian approx



Tracking performance

Theorem

error :=      1
T

xonline (t)− x*(t)
t=1

T

∑

error  ≤   ε
λM / λm −ε

⋅
1
T

x*(t)− x*(t −1) +Δt( )
t=1

T

∑ +δ

“condition number” 
of Hessian



Tracking performance

Theorem

error :=      1
T

xonline (t)− x*(t)
t=1

T

∑

error  ≤   ε
λM / λm −ε

⋅
1
T

x*(t)− x*(t −1) +Δt( )
t=1

T

∑ +δ

“initial distance” from x*(t)



Implementation

Implement L-BFGS-B
n More scalable
n Handles (box) constraints X

Simulations
n IEEE 300 bus



Tracking performance

IEEE 300 bus



Tracking performance
7

Fig. 3. The absolute and relative gap between the objective values of the real-time operations x̂(t) and the optimal solutions x⇤(t).

0.376 sec. We can see that the proposed implementation of the
real-time OPF algorithm is quite computationally efficient.

Fig. 4. Histogram of computation times for each real-time update.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we proposed a real-time OPF algorithm based
on quasi-Newton methods. This algorithm utilizes real-time
measurement data and performs suboptimal updates on a
faster timescale than traditional OPF. We studied its tracking
performance, and also proposed a specific implementation
based on the L-BFGS-B algorithm. Simulations showed that
the proposed algorithm can track the optimal operations well
and is computationally efficient.

There still remain a number of issues in designing real-
time OPF algorithms. Currently the updates are carried out
every 6 seconds, which could be too short for us to neglect
the dynamics for large networks. To extend the time between
each updates, we need to improve the algorithm so that it will
still work when larger changes in loads and generations are
allowed.

One possible direction is to find more accurate methods of
estimating the Hessian. The L-BFGS-B method turns out to

work well as simulations have shown, but we have also found
some difficult situations where more accurate estimate of the
Hessian is needed.

Another possible direction is to introduce dual variables
instead of penalty functions. It has been observed that by
introducing dual variables, one can usually achieve better
convergence and smaller constraint violations, and potentially
avoid numerical issues. We are especially interested in com-
bining primal-dual methods with quasi-Newton methods.

Besides improving the tracking performance of the al-
gorithm, we are also interested in developing a distributed
algorithm for real-time OPF. As the number of controllable
devices increases, the communication between controllable
devices and the control center will become a bottleneck, and
distributed algorithms will be much favored.

APPENDIX A
PROOF OF THEOREM 1

We write the box constraint (5c)-(5e) as l(t)  x(t)  u(t).
First we note that, by the definition of �M and �m, we have

kxk2Bt
= xTBtx  �MxTWx = �Mkxk2W,

kxk2Bt
= xTBtx � �mxTWx = �mkxk2W,

for any vector x and any t 2 {1, . . . , T}.
At the beginning of time t, the initial point is x0(t) =

Ptx̂(t�1), where Pt is the projection onto the current feasible
control region l(t)  x(t)  u(t), and x̂(t�1) is the previous
operation. Let

mt(x) := gT
t (x� x0(t))

+
1

2
(x� x0(t))

TBt(x� x0(t)).

Then the updated operation x̂(t) is the optimal of

min
l(t)xu(t)

mt(x).
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of buses with controllable loads/sensors. Condition 1) encodes
information on the graph symmetry and is shown to hold
for almost all practical systems. Condition 2) captures how
buses interact with each other through the network and can be
verified using the eigenvectors of the graph Laplacian matrix.
We would like to remark that our results do not explicitly
hint on how optimal decentralized control scheme should be
designed. Indeed, the standard control associated with our
results is typically centralized and open-loop. The focus of
this work is more towards a fundamental understanding on
structural properties of such system.

The rest of the paper is organized as follows. We first review
the system model and relevant spectral graph theory concepts
in Section II. In Section III, we present the exact conditions
for the system to be controllable. The practical interpretations
of these conditions are discussed in Section IV. The parallel
results in the system observability are given in Section V. We
present two applications of our characterizations in Section
VI. The first application as presented in Section VI-A is more
analytical, which reduces the problem of optimal placement
for controllable loads and sensors to a set cover problem.
The second application as presented in Section VI-B is an
evaluation in the IEEE 39-bus New England interconnection
test system, showing how a single well chosen critical bus
based on our theory is capable of regulating the frequency of
the whole grid. We conclude in Section VII.

II. MODEL AND PROBLEM SETUP

In this section, we present the system model as adopted
in [5]–[8] and review relevant concepts from spectral graph
theory. We also refine the existing models to include the
limited coverage of controllable loads and sensors.

Let R denote the set of real numbers. For a set N , its
cardinality is denoted as |N |. We reserve caligraphic symbols
like F ,U ,O for sets related to the physical system (for in-
stance buses with controllable loads). Uppercase symbols like
A,B,C usually refer to matrices, but can also refer to a vector
space or a set in the proofs. For two matrices A,B with proper
dimensions, [A B] means the concatenation of A,B in a row,
and [A;B] means the concatenation of A,B in a column.
A variable without subscript usually denotes a vector with
appropriate components, e.g., ! = (!j , j 2 N ) 2 R|N |. For a
matrix A, we denote AT , A�1, A�1/2 and A† as its transpose,
inverse, inverse of square root and Moore-Penrose pseudo-
inverse respectively, provided they are properly defined. For
a time-dependent signal !(t), we use !̇ to denote its time
derivative d!

dt . For any vector x, we use diag(x) to denote the
diagonal matrix with entries from x as the main diagonal.

We use the graph G = (N , E) to describe the power
transmission network, where N = {1, . . . , n} is the set of
buses and E ⇢ N ⇥N denotes the set of transmission lines.
The terms bus/node and line/edge are used interchangeably
in this paper. We assume without loss of generality that G is
connected and simple. An edge in E is denoted either as e or
(i, j). We further assign an arbitrary orientation over E so that
if (i, j) 2 E then (j, i) /2 E . For any subset of buses S 2 N ,
we denote its characteristic function using the corresponding
symbol 1S . Let n = |N | ,m = |E| be the number of buses

and transmission lines, respectively. The incidence matrix of
G is a n⇥m matrix C defined as

Cie =

8
><

>:

1 if node i is the source of e
�1 if node i is the target of e
0 otherwise

For each bus j 2 N , we denote the frequency deviation as
!j and denote the inertia constant as Mj > 0. The symbol
Pm
j is overloaded to denote the mechanical power injection

if j is a generator bus and denote the aggregate change in
uncontrollable load if j is a load bus. For each transmission
line (i, j) 2 E , we denote as Pij the branch flow deviation
and denote as Bij the link susceptance.

At each bus, there are three types of additional components
which affect the system dynamics.

1) Controllable Load. Such component incurs extra load
denoted by dj and the level of dj is controllable. The
set of buses with controllable loads is denoted as U .

2) Frequency Sensitive Load. Such component is sensitive
to local frequency deviations and incurs additional load
of d̂j = Dj!j . We do not allow direct control to
such loads and denote the set of buses with frequency
sensitive loads as F .

3) Sensor. Such component measures the local frequency
deviation !j . The set of buses equipped with sensors is
denoted as S .

Summarizing the above different components, the swing and
network dynamics is given by

�Mj!̇j = 1F (j)d̂j + 1U (j)dj � Pm
j +

X

e2E
CjePe, j 2 N

Ṗij = Bij(!i � !j), (i, j) 2 E

and the system state is observed through

yj = 1S(j)!j , j 2 N

Readers are referred to [6] for more detailed justification and
derivation of this model.

Now using x to denote the system state x = [!;P ], and
putting F , U , S, M , D and B to be the diagonal matrices
with 1F (j), 1U (j), 1S(j), Mj , Dj and Bij as diagonal entries
respectively, we can rewrite the system dynamics in the state-
space form

ẋ = Ax�


M�1U

0

�
d+


M�1

0

�
Pm (1a)

y =
⇥
S 0

⇤
x (1b)

where
A =


�M�1FD �M�1C

BCT 0

�

and is referred to as the system matrix of (1) in the sequel.
In our characterizations, the scaled graph Laplacian matrix

defined as L = M�1/2CBCTM�1/2 plays a key role. It is
more explicitly given by

Lij =

8
><

>:

�
Bijp
MiMj

i 6= j, (i, j) 2 E or (j, i) 2 E

1
Mi

P
j:j2N(i) Bij i = j

0 otherwise
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information on the graph symmetry and is shown to hold
for almost all practical systems. Condition 2) captures how
buses interact with each other through the network and can be
verified using the eigenvectors of the graph Laplacian matrix.
We would like to remark that our results do not explicitly
hint on how optimal decentralized control scheme should be
designed. Indeed, the standard control associated with our
results is typically centralized and open-loop. The focus of
this work is more towards a fundamental understanding on
structural properties of such system.

The rest of the paper is organized as follows. We first review
the system model and relevant spectral graph theory concepts
in Section II. In Section III, we present the exact conditions
for the system to be controllable. The practical interpretations
of these conditions are discussed in Section IV. The parallel
results in the system observability are given in Section V. We
present two applications of our characterizations in Section
VI. The first application as presented in Section VI-A is more
analytical, which reduces the problem of optimal placement
for controllable loads and sensors to a set cover problem.
The second application as presented in Section VI-B is an
evaluation in the IEEE 39-bus New England interconnection
test system, showing how a single well chosen critical bus
based on our theory is capable of regulating the frequency of
the whole grid. We conclude in Section VII.

II. MODEL AND PROBLEM SETUP

In this section, we present the system model as adopted
in [5]–[8] and review relevant concepts from spectral graph
theory. We also refine the existing models to include the
limited coverage of controllable loads and sensors.

Let R denote the set of real numbers. For a set N , its
cardinality is denoted as |N |. We reserve caligraphic symbols
like F ,U ,O for sets related to the physical system (for in-
stance buses with controllable loads). Uppercase symbols like
A,B,C usually refer to matrices, but can also refer to a vector
space or a set in the proofs. For two matrices A,B with proper
dimensions, [A B] means the concatenation of A,B in a row,
and [A;B] means the concatenation of A,B in a column.
A variable without subscript usually denotes a vector with
appropriate components, e.g., ! = (!j , j 2 N ) 2 R|N |. For a
matrix A, we denote AT , A�1, A�1/2 and A† as its transpose,
inverse, inverse of square root and Moore-Penrose pseudo-
inverse respectively, provided they are properly defined. For
a time-dependent signal !(t), we use !̇ to denote its time
derivative d!

dt . For any vector x, we use diag(x) to denote the
diagonal matrix with entries from x as the main diagonal.

We use the graph G = (N , E) to describe the power
transmission network, where N = {1, . . . , n} is the set of
buses and E ⇢ N ⇥N denotes the set of transmission lines.
The terms bus/node and line/edge are used interchangeably
in this paper. We assume without loss of generality that G is
connected and simple. An edge in E is denoted either as e or
(i, j). We further assign an arbitrary orientation over E so that
if (i, j) 2 E then (j, i) /2 E . For any subset of buses S 2 N ,
we denote its characteristic function using the corresponding
symbol 1S . Let n = |N | ,m = |E| be the number of buses

and transmission lines, respectively. The incidence matrix of
G is a n⇥m matrix C defined as

Cie =
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1 if node i is the source of e
�1 if node i is the target of e
0 otherwise

For each bus j 2 N , we denote the frequency deviation as
!j and denote the inertia constant as Mj > 0. The symbol
Pm
j is overloaded to denote the mechanical power injection

if j is a generator bus and denote the aggregate change in
uncontrollable load if j is a load bus. For each transmission
line (i, j) 2 E , we denote as Pij the branch flow deviation
and denote as Bij the link susceptance.

At each bus, there are three types of additional components
which affect the system dynamics.

1) Controllable Load. Such component incurs extra load
denoted by dj and the level of dj is controllable. The
set of buses with controllable loads is denoted as U .

2) Frequency Sensitive Load. Such component is sensitive
to local frequency deviations and incurs additional load
of d̂j = Dj!j . We do not allow direct control to
such loads and denote the set of buses with frequency
sensitive loads as F .

3) Sensor. Such component measures the local frequency
deviation !j . The set of buses equipped with sensors is
denoted as S .

Summarizing the above different components, the swing and
network dynamics is given by

�Mj!̇j = 1F (j)d̂j + 1U (j)dj � Pm
j +
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e2E
CjePe, j 2 N

Ṗij = Bij(!i � !j), (i, j) 2 E

and the system state is observed through

yj = 1S(j)!j , j 2 N

Readers are referred to [6] for more detailed justification and
derivation of this model.

Now using x to denote the system state x = [!;P ], and
putting F , U , S, M , D and B to be the diagonal matrices
with 1F (j), 1U (j), 1S(j), Mj , Dj and Bij as diagonal entries
respectively, we can rewrite the system dynamics in the state-
space form
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and is referred to as the system matrix of (1) in the sequel.
In our characterizations, the scaled graph Laplacian matrix

defined as L = M�1/2CBCTM�1/2 plays a key role. It is
more explicitly given by
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information on the graph symmetry and is shown to hold
for almost all practical systems. Condition 2) captures how
buses interact with each other through the network and can be
verified using the eigenvectors of the graph Laplacian matrix.
We would like to remark that our results do not explicitly
hint on how optimal decentralized control scheme should be
designed. Indeed, the standard control associated with our
results is typically centralized and open-loop. The focus of
this work is more towards a fundamental understanding on
structural properties of such system.

The rest of the paper is organized as follows. We first review
the system model and relevant spectral graph theory concepts
in Section II. In Section III, we present the exact conditions
for the system to be controllable. The practical interpretations
of these conditions are discussed in Section IV. The parallel
results in the system observability are given in Section V. We
present two applications of our characterizations in Section
VI. The first application as presented in Section VI-A is more
analytical, which reduces the problem of optimal placement
for controllable loads and sensors to a set cover problem.
The second application as presented in Section VI-B is an
evaluation in the IEEE 39-bus New England interconnection
test system, showing how a single well chosen critical bus
based on our theory is capable of regulating the frequency of
the whole grid. We conclude in Section VII.

II. MODEL AND PROBLEM SETUP

In this section, we present the system model as adopted
in [5]–[8] and review relevant concepts from spectral graph
theory. We also refine the existing models to include the
limited coverage of controllable loads and sensors.

Let R denote the set of real numbers. For a set N , its
cardinality is denoted as |N |. We reserve caligraphic symbols
like F ,U ,O for sets related to the physical system (for in-
stance buses with controllable loads). Uppercase symbols like
A,B,C usually refer to matrices, but can also refer to a vector
space or a set in the proofs. For two matrices A,B with proper
dimensions, [A B] means the concatenation of A,B in a row,
and [A;B] means the concatenation of A,B in a column.
A variable without subscript usually denotes a vector with
appropriate components, e.g., ! = (!j , j 2 N ) 2 R|N |. For a
matrix A, we denote AT , A�1, A�1/2 and A† as its transpose,
inverse, inverse of square root and Moore-Penrose pseudo-
inverse respectively, provided they are properly defined. For
a time-dependent signal !(t), we use !̇ to denote its time
derivative d!

dt . For any vector x, we use diag(x) to denote the
diagonal matrix with entries from x as the main diagonal.

We use the graph G = (N , E) to describe the power
transmission network, where N = {1, . . . , n} is the set of
buses and E ⇢ N ⇥N denotes the set of transmission lines.
The terms bus/node and line/edge are used interchangeably
in this paper. We assume without loss of generality that G is
connected and simple. An edge in E is denoted either as e or
(i, j). We further assign an arbitrary orientation over E so that
if (i, j) 2 E then (j, i) /2 E . For any subset of buses S 2 N ,
we denote its characteristic function using the corresponding
symbol 1S . Let n = |N | ,m = |E| be the number of buses

and transmission lines, respectively. The incidence matrix of
G is a n⇥m matrix C defined as

Cie =
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1 if node i is the source of e
�1 if node i is the target of e
0 otherwise

For each bus j 2 N , we denote the frequency deviation as
!j and denote the inertia constant as Mj > 0. The symbol
Pm
j is overloaded to denote the mechanical power injection

if j is a generator bus and denote the aggregate change in
uncontrollable load if j is a load bus. For each transmission
line (i, j) 2 E , we denote as Pij the branch flow deviation
and denote as Bij the link susceptance.

At each bus, there are three types of additional components
which affect the system dynamics.

1) Controllable Load. Such component incurs extra load
denoted by dj and the level of dj is controllable. The
set of buses with controllable loads is denoted as U .

2) Frequency Sensitive Load. Such component is sensitive
to local frequency deviations and incurs additional load
of d̂j = Dj!j . We do not allow direct control to
such loads and denote the set of buses with frequency
sensitive loads as F .

3) Sensor. Such component measures the local frequency
deviation !j . The set of buses equipped with sensors is
denoted as S .

Summarizing the above different components, the swing and
network dynamics is given by

�Mj!̇j = 1F (j)d̂j + 1U (j)dj � Pm
j +
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CjePe, j 2 N

Ṗij = Bij(!i � !j), (i, j) 2 E

and the system state is observed through

yj = 1S(j)!j , j 2 N

Readers are referred to [6] for more detailed justification and
derivation of this model.

Now using x to denote the system state x = [!;P ], and
putting F , U , S, M , D and B to be the diagonal matrices
with 1F (j), 1U (j), 1S(j), Mj , Dj and Bij as diagonal entries
respectively, we can rewrite the system dynamics in the state-
space form
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for almost all practical systems. Condition 2) captures how
buses interact with each other through the network and can be
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We would like to remark that our results do not explicitly
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designed. Indeed, the standard control associated with our
results is typically centralized and open-loop. The focus of
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in Section II. In Section III, we present the exact conditions
for the system to be controllable. The practical interpretations
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results in the system observability are given in Section V. We
present two applications of our characterizations in Section
VI. The first application as presented in Section VI-A is more
analytical, which reduces the problem of optimal placement
for controllable loads and sensors to a set cover problem.
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test system, showing how a single well chosen critical bus
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in [5]–[8] and review relevant concepts from spectral graph
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limited coverage of controllable loads and sensors.
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0 otherwise

For each bus j 2 N , we denote the frequency deviation as
!j and denote the inertia constant as Mj > 0. The symbol
Pm
j is overloaded to denote the mechanical power injection

if j is a generator bus and denote the aggregate change in
uncontrollable load if j is a load bus. For each transmission
line (i, j) 2 E , we denote as Pij the branch flow deviation
and denote as Bij the link susceptance.

At each bus, there are three types of additional components
which affect the system dynamics.

1) Controllable Load. Such component incurs extra load
denoted by dj and the level of dj is controllable. The
set of buses with controllable loads is denoted as U .

2) Frequency Sensitive Load. Such component is sensitive
to local frequency deviations and incurs additional load
of d̂j = Dj!j . We do not allow direct control to
such loads and denote the set of buses with frequency
sensitive loads as F .

3) Sensor. Such component measures the local frequency
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denoted as S .

Summarizing the above different components, the swing and
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�Mj!̇j = 1F (j)d̂j + 1U (j)dj � Pm
j +
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and the system state is observed through
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Readers are referred to [6] for more detailed justification and
derivation of this model.

Now using x to denote the system state x = [!;P ], and
putting F , U , S, M , D and B to be the diagonal matrices
with 1F (j), 1U (j), 1S(j), Mj , Dj and Bij as diagonal entries
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In our characterizations, the scaled graph Laplacian matrix

defined as L = M�1/2CBCTM�1/2 plays a key role. It is
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Algebraic coverage

spectral decomposition of L

where N(i) is the set of neighbors of i. For any vector x 2 Rn,
we have

xTLx =
X

(i,j)2E

Bij

 
xi

p
Mi

�
xjp
Mj

!2

� 0

This implies that L is a positive semidefinite matrix and
thus diagonalizable. It is well-known that rank(L) = n � 1
for a connected graph [16] and therefore 0 is a simple
eigenvalue of L. We denote 0 = �1 < �2  · · ·  �n

as its eigenvalues and put � := {�1,�2, · · · ,�n} to be an
orthonormal set of its eigenvectors with �s affording �s. The
notation N = {1, 2, . . . , n} is abused to also denote the index
set of �. Whether N denotes the set of buses or denotes an
index set for � will be clear from the context. The following
property of the spectrum of L turns out to be particularly
useful in this work.

Definition II.1. The matrix L is said to have simple spectrum

if all the eigenvalues of L are distinct.

We recommend the readers to take M = In and B = Im in
first reading, under which our results are significantly cleaner
yet all key points (except Proposition IV.1) are captured.
Throughout the analysis, we make the following assumption:

Sensitive Load Frequency sensitive components only exist
at buses with controllable loads. That is, we assume F ⇢ U .

III. CONTROLLABILITY

In this section, we analyze the state-space dynamics given
in (1) and characterize its controllability using the spectra of
the scaled Laplacian matrix L.

Before presenting our characterization, we first clarify what
we mean by the controllability of (1). The classical definition
of controllability requires the whole state space Rn+m being
reachable from any initial point. This turns out to be too strong
and is not suitable for our application. Indeed, from the branch
flow dynamics

Ṗ = BCT!

we see that

B�1 (P (t)� P (0)) =

Z t

0
CT!(s)ds 2 range(CT )

If we assume the system is in the nominal state at time t = 0,
then we know B�1P (t) 2 range(CT ) for any t. In other
words, the scaled branch flow vector is confined in the range
of CT because of the system physics. This motivates the
following definition.

Definition III.1. The dynamics (1) is said to be P-controllable

or controllable in power system sense, if for any t > 0, initial
state x(0) = [!(0);P (0)] and target state x(t) = [!(t);P (t)]
satisfying

B�1 (P (t)� P (0)) 2 range(CT )

there exists a control u such that

x(t) = �(x(0), u, t)

where �(x(0), u, t) is the system state at time t given initial
state x(0) and control input u.

Our first result generalizes the classical Kalman criteria to
the context of P-controllability. It shows that to determine the
system P-controllability, it suffices to form the controllability
matrix with the scaled Laplacian matrix L (instead of the full
system matrix A) and we can ignore the drifting term Pm

(even when it is time-variant) in (1a).

Proposition III.2. The dynamics (1) is P-controllable if and

only if the matrix

W =
⇥
M�1/2U �LM�1/2U · · · (�L)n�1M�1/2U

⇤

has full row rank.

The proof of this proposition is presented in Appendix A.
This result tells us that to decide the P-controllability of (1),
it amounts to compute the rank of W . Recall 0 = �1 < �2 

· · ·  �n are the eigenvalues of L and {�1,�2, . . . ,�n} is
an orthonormal set of corresponding eigenvectors. Let Q be
the matrix with �j’s as columns and ⇤ be the diagonal matrix
with �j’s as diagonal entries, i.e. L = Q⇤QT . To facilitate the
discussion, we introduce the concept of algebraic coverage.

Definition III.3. With all previous notations, the algebraic

coverage of a bus j 2 N , denoted as cov(j), is defined to be
the set

cov(j) := {s 2 N : �s,j 6= 0}

where �s,j is the j-th entry of �s.

Now we are ready to give the spectral characterization for
the P-controllability of (1).

Theorem III.4. With all the previous notations, the dynamics

(1) is P-controllable if and only if

1) The scaled Laplacian matrix L has simple spectrum

2) The algebraic coverage from controllable loads is full

N =
[

j2U
cov(j) (2)

Proof. Recall U is the diagonal matrix encoding the placement
of controllable loads. Let V be the Vandermonde matrix

V =

2

6664

1 ��1 �2
1 · · · (��1)n�1

1 ��2 �2
2 · · · (��2)n�1

...
...

...
. . .

...
1 ��n �2

n · · · (��n)n�1

3

7775

and
uj = QTM�1/2Uj , 8j 2 N

where Uj is the j-th column of U .
Since Q is orthogonal, we know (�L)k = Q(�⇤)kQT and

as a result

W = Q
⇥
QTM�1/2U · · · (�⇤)n�1QTM�1/2U

⇤
(3)

For any integer p, q, we denote as r(p, q) the unique number
r 2 {1, 2, · · · , q} such that p = qk + r for some integer k.
Define a permutation matrix ⇧ 2 Rn2⇥n2

given by

⇧ij =

(
1 j = (r(i, n)� 1)n+ b(i� 1)/nc+ 1

0 otherwise

eigenvectors of L

Q = β1  ! βn[ ]

algebraic coverage of bus j

cov( j) := s  βsj ≠ 0{ }



Controllability

∪
j∈U

cov( j) = all buses{ }

Theorem

Swing dynamics is controllable if and only if
n L has a simple spectrum
n controllable DERs have full coverage

holds a.s.



Observability

∪
j∈S

cov( j) = all buses{ }

Theorem

Swing dynamics is observable if and only if
n L has a simple spectrum
n frequency sensors have full coverage

holds a.s.



Application

Optimal placement of DER & frequency sensors

n set covering problem
n always install sensors at buses with controllable DERs, 

and vice versa



Example 2 – Control Coverage

• Which	choice	provides	controllability?
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Example 2 – Control Coverage

(a) {1,2,3,4,5,6}
• Which	choice	provides	controllability?
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Example 2 – Control Coverage

(a) {1,2,3,4,5,6}

(b) {1,18,13,8,29,33,
38}

• Which	choice	provides	controllability?
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Example 2 – Control Coverage

(a) {1,2,3,4,5,6}

(b) {1,18,13,8,29,33,
38}

(c) {35}

• Which	choice	provides	controllability?
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Example 2 – Control Coverage

(a) {1,2,3,4,5,6}

(b) {1,18,13,8,29,33,
38}

(c) {35}

(d) {14,15,17,18}

• Which	choice	provides	controllability?
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Example 2 – Control Coverage

(a) {1,2,3,4,5,6}

(b) {1,18,13,8,29,33,
38}

(c) {35}

(d) {14,15,17,18}

• Which	choice	provides	controllability?
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Application

Fig. 2. Line diagram of the IEEE 39-bus New England interconnection test
system.

Corollary VI.1. For the dynamics (1), the set of optimal

placements of controllable loads and the set of optimal place-

ment of sensors are the same.

This result tells us that, in practice, we should always install
sensors to the buses with controllable loads, and vice versa.

B. Secondary frequency regulation with a single bus

We now demonstrate how our results can identify critical
buses for controllability by evaluating over the IEEE 39-bus
New England interconnection test system, as shown in Fig. 2.
There are 10 generators and 29 load nodes in the system, and
in contrast to our linearized model for theoretical study, the
simulation adopts more realistic nonlinear dynamics.

One can check that the L matrix associated with this
network has simple spectrum (which is as expected according
to Proposition IV.1) and that the bus 35 has full algebraic
coverage, i.e. all the eigenvectors �s of L have nonzero entry
at position 35. Therefore Theorem III.4 implies that even
if we can only inject control at bus 35, the system is still
P-controllable. Thus we should be able to drive the whole
system back to the nominal state after arbitrary disturbance.
In order to verify this, we add a step increase of 1 pu to
the generation at bus 30, and compare the system evolution
with or without control at bus 35. In contrast to the standard
control associated with the controllability Gramian, the control
we adopt here utilizes only local frequency deviation. Details
about the control scheme design can be found in [24]. The
simulation results are shown in Fig. 3.

As one can see from the figure, despite the geograph-
ical distance between the disturbance and the controllable
node, the control scheme successfully drives the grid back
to nominal state within 5 seconds. In contrast, when no
control is posed, the bus frequencies still stabilize because
of governor dynamics, but not to the nominal state. Moreover,
the stabilization process takes considerably longer time. Such
difference demonstrates that with a single bus 35 chosen based
on our theory, frequency regulation over the grid can actually
be achieved.

(a) With control. (b) Without control.

Fig. 3. Comparison of the system evolution with and without control at bus
35 after adding a step increase of 1 pu to the generation at bus 30.

VII. CONCLUSION

In this work, we develop full characterizations on the
impact of limited controllable loads/sensors coverage over
the controllability/observability for the swing and power flow
dynamics in frequency regulation. We present two applications
of our theoretical results: 1) an analytical application which
reduces the problem of optimal placement of controllable loads
and sensors to a set cover problem; 2) an evaluation over the
IEEE 39-bus New England interconnection test system where
secondary frequency control over the whole network can be
achieved by a single critical bus chosen based on our theory.

Our results can be extended in several directions. First,
the linearized model (1) is usually accurate near the nominal
operation point, but may incur noticeable error when the
system is far away from the equilibrium. Such scenarios
may arise after a system failure. It is thus interesting to see
how our results can be generalized to nonlinear dynamics.
Second, the control suggested by our result can be very
costly. It is of interest to understand what the cheapest control
should be if we already know the system is controllable, and
how the placement of controllable loads affects this optimal
cost. Third, in applications, we usually only focus on the
controllability over a subset of transmission lines that are
subject to congestion. We should understand whether we can
refine the theory so that the results can be tailored for such
partial controllability.
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This result tells us that, in practice, we should always install
sensors to the buses with controllable loads, and vice versa.
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in contrast to our linearized model for theoretical study, the
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network has simple spectrum (which is as expected according
to Proposition IV.1) and that the bus 35 has full algebraic
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reduces the problem of optimal placement of controllable loads
and sensors to a set cover problem; 2) an evaluation over the
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may arise after a system failure. It is thus interesting to see
how our results can be generalized to nonlinear dynamics.
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sensors to the buses with controllable loads, and vice versa.
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buses for controllability by evaluating over the IEEE 39-bus
New England interconnection test system, as shown in Fig. 2.
There are 10 generators and 29 load nodes in the system, and
in contrast to our linearized model for theoretical study, the
simulation adopts more realistic nonlinear dynamics.

One can check that the L matrix associated with this
network has simple spectrum (which is as expected according
to Proposition IV.1) and that the bus 35 has full algebraic
coverage, i.e. all the eigenvectors �s of L have nonzero entry
at position 35. Therefore Theorem III.4 implies that even
if we can only inject control at bus 35, the system is still
P-controllable. Thus we should be able to drive the whole
system back to the nominal state after arbitrary disturbance.
In order to verify this, we add a step increase of 1 pu to
the generation at bus 30, and compare the system evolution
with or without control at bus 35. In contrast to the standard
control associated with the controllability Gramian, the control
we adopt here utilizes only local frequency deviation. Details
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node, the control scheme successfully drives the grid back
to nominal state within 5 seconds. In contrast, when no
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35 after adding a step increase of 1 pu to the generation at bus 30.
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and sensors to a set cover problem; 2) an evaluation over the
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achieved by a single critical bus chosen based on our theory.
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the linearized model (1) is usually accurate near the nominal
operation point, but may incur noticeable error when the
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Summary
Relaxations of AC OPF

n Dealing with nonconvexity

Realtime AC OPF
n Dealing with volatility

Optimal placement
n Dealing with limited sensing/control


