Duration-deadline Jointly Differentiated Energy Services

Wei Chen

Hong Kong University of Science and Technology

Joint work with Ms. Yanfang Mo, Prof. Li Qiu, and Prof. Pravin Varaiya

May 28, 2018

Wei Chen (HKUST)

Duration-deadline Differentiated Energy

May 28, 2018 1 / 23

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Demand/supply balance with high renewables

- Renewables bring in uncertainties and interruptions in the power supply.
- Conventional scheme of supply following demand may not work well.
 - Reserve generation is expensive.
 - Fast ramping requirement.
 - Create extra green-house gases.

イロト イロト イヨト イヨト

Unlocking the power of load flexibilities

- An alternative scheme of demand following supply: Use the load flexibilities to compensate the supply uncertainties.
- Flexible loads can be modulated, deferred, or intermitted.
 - Thermostatically controlled loads (TCLs)
 - Electrical vehicles charging
 - Pool pumps

イロト 不得下 イヨト イヨト

Duration-deadline jointly differentiated energy services

- Power delivery is segmented into a series of time slots.
- A load has both a duration requirement and a deadline requirement.
- A load is indifferent of the actual delivery time.
- Example: electrical vehicle charging.

Mathematical formulation

- T time slots. Power available at time slot j is c_j .
- *N* electric vehicles. EV *i* needs to be charged 1 KW for *r_i* time slots before deadline λ_{*i*}.
- The supply is adequate if there is a power allocation to meet all the demands.
- If further, $r_1 + r_2 + \cdots + r_N = c_1 + c_2 + \cdots + c_T$, supply is exact adequate.

イロト イヨト イヨト イヨト

Objectives

Adequacy

- What is the adequacy condition?
- Given an inadequate supply, what is the minimum required purchase?
- How to allocate? (not covered in this presentation)

• Market implementation

- Social welfare problem
- Existence of an efficient competitive equilibrium

イロト イポト イヨト イヨ

Adequacy Problem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Adequacy: (0, 1)-matrix completion problem

Complete a (0,1)-matrix A with a staircase of fixed zeros such that:

- the row sum vector is $r = \begin{bmatrix} r_1 & r_2 & \dots & r_N \end{bmatrix}'$
- the column sums are bounded by $c = \begin{bmatrix} c_1 & c_2 & \dots & c_T \end{bmatrix}'$

(日) (同) (三) (三)

Significance of (0, 1)-matrix completion problems

- Practical significance:
 - Job allocation in data centers
 - Scheduling in real-time systems
 - Logistics
 - Image reconstruction
 - Graph realization
 - ▶
- Theoretical significance:
 - Integer programming
 - Network flow theory
 - Matching theory
 - ▶ ...

イロト イポト イヨト イヨト

Literature: unconstrained case

Gale-Ryser Theorem (1957)

The unconstrained (0,1)-matrix completion is solvable if and only if $c \prec^w r^*$.

- Conjugate vector r*
 - Construct a (0, 1)-matrix A* with row sum vector r such that all the ones are put as far to the left as possible.
 - The column sum vector of A^* , is called the conjugate vector of r.

• Example:
$$r = \begin{bmatrix} 2 & 3 & 4 & 6 \end{bmatrix}'$$

$$A^* = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix},$$
$$r^* = \begin{bmatrix} 4 & 4 & 3 & 2 & 1 & 1 \end{bmatrix}'.$$

イロト 不得下 イヨト イヨト

Literature: unconstrained case

Gale-Ryser Theorem (1957)

The unconstrained (0, 1)-matrix completion is solvable if and only if $c \prec^w r^*$.

• Majorization:

$$\begin{aligned} x \prec y \text{ if } & \sum_{i=1}^{k} x_i^{\uparrow} \ge \sum_{i=1}^{k} y_i^{\uparrow}, k = 1, \dots, n-1, \text{ and } \sum_{i=1}^{n} x_i^{\uparrow} = \sum_{i=1}^{n} y_i^{\uparrow}, \\ x \prec^w y \text{ if } & \sum_{i=1}^{k} x_i^{\uparrow} \ge \sum_{i=1}^{k} y_i^{\uparrow}, k = 1, \dots, n. \end{aligned}$$

• A partial order that orders the level of fluctuations:

• Example: $\begin{bmatrix} 2 & 2 & 2 \end{bmatrix}' \preccurlyeq \begin{bmatrix} 1 & 3 & 2 \end{bmatrix}'$.

イロト イヨト イヨト イヨト

Literature: constrained case

- Zero trace [Fulkerson, 1960]
- At most one fixed zero in each column [Anstee, 1982; Chen, 1992]
- Zero blocks on the diagonal [Lari, Ricca, and Scozzari, 2014]

• ...

イロト イヨト イヨト イヨ

Adequacy and adequacy gap (a two-deadline case)

• Define structure matrix S of dimension $T_1 \times (T - T_1)$:

$$S_{k_1k_2} = \sum_{j=k_1+1}^{T_1} c_j + \sum_{j=T_1+k_2+1}^{T} c_j - \sum_{i=1}^{N_1} [r_i - (k_1+k_2)]^+ - \sum_{i=N_1+1}^{N} (r_i - k_1)^+$$

• The constrained (0,1)-matrix completion is solvable if and only if $S \ge 0$.

• In case of insufficient supply, the minimum additional power needed is

$$\min_{k_1,k_2} S_{k_1k_2}$$

W. Chen, Y. Mo, L. Qiu, and P. Varaiya, LAA, 2016

イロト 不得下 イヨト イヨト

Interpretation

- Supply tail: $\sum_{j=k_1+1}^{T_1} c_j + \sum_{j=T_1+k_2+1}^{T} c_j$. Demand tail: $\sum_{i=1}^{N_1} [r_i - (k_1+k_2)]^+ + \sum_{i=N_1+1}^{N} (r_i - k_1)^+$.
- Energy dominance in tails.

$$S_{k_1k_2} = \sum_{j=k_1+1}^{T_1} c_j + \sum_{j=T_1+k_2+1}^{T} c_j - \sum_{i=1}^{N_1} [r_i - (k_1+k_2)]^+ - \sum_{i=N_1+1}^{N} (r_i - k_1)^+ \ge 0.$$

イロト イヨト イヨト イヨ

Multiple deadlines: from structure matrix to tensor

• Structure tensor *S*:

$$S_{k_1k_2...k_m} = \sum_{j=k_1+1}^{T_1} c_j + \sum_{j=T_1+k_2+1}^{T_2} c_j + \dots + \sum_{j=T_{m-1}+k_m+1}^{T} c_j$$
$$-\sum_{i=1}^{N_1} [r_i - (k_1 + \dots + k_m)]^+ - \sum_{i=N_1+1}^{N_2} [r_i - (k_1 + \dots + k_{m-1})]^+ - \dots - \sum_{i=N_{m-1}+1}^{N} (r_i - k_1)^+.$$

W. Chen, Y. Mo, L. Qiu, and P. Varaiya, LAA, 2016

Wei Chen (HKUST)

Duration-deadline Differentiated Energy

May 28, 2018 15 / 23

A B > A B >

Market Implementation

< ∃

Market implementation

Three elements of a market:

Services:

Duration-differentiated energy services with two different deadlines: T_1 , T. The service of duration r and deadline λ has a price π_r^{λ} .

• Consumers:

A continuum of consumers indexed by $x \in [0, 1]$. Utility function $U(x, p(x), r(x), \lambda(x))$.

• Supplier:

An aggregate supplier who has available for free a supply profile c.

イロト イヨト イヨト イヨト

Social welfare optimization

- Consumer welfare: utility minus purchase cost. Supplier welfare: revenue minus production cost.
- Social welfare: total utility of the consumers: $\int_0^1 U(x, p, r, \lambda) dx$.
- Find an allocation that maximizes social welfare under adequacy constraint.

Theorem

The social welfare optimization problem has a solution for any type of utility function $U(x, p, r, \lambda)$.

W. Chen, L. Qiu, and P. Varaiya, CDC, 2015

イロト イロト イヨト イヨト

Competitive equilibrium

• Consumers maximize their own welfare: $\max_{p,r,\lambda} U(x, p, r, \lambda) - p\pi_r^{\lambda}$.

- Supplier chooses production level n_r^{λ} for service (r, λ) to maximize revenue.
- Market clears: the level of consumption and production matches.
- A competitive equilibrium is said to be efficient if the resulting allocation maximizes the social welfare.

Theorem

There exists a forward market with an efficient competitive equilibrium.

W. Chen, L. Qiu, and P. Varaiya, CDC, 2015

Summary

- Adequacy:
 - ► The adequacy condition is given by the nonnegativity of a structure tensor.
 - Adequacy gap: the largest difference between demand tails and supply tails.
- Market implementation:
 - Social welfare optimization has a solution for any type of utility functions.
 - The optimal social allocation can be sustained as a competitive equilibrium.

イロト イポト イヨト イヨ

Extensions and beyond

- Multiple arrival and multiple deadlines.
 - Y. Mo, W. Chen, and L. Qiu, IFAC 2016
- Rate constrained energy services (an integer matrix completion problem).
 - Y. Mo, W. Chen, and L. Qiu, IFAC 2016
- Peer-to-peer charging (a (-1, 0, 1)-matrix completion problem).
 - ▶ Y. Mo, W. Chen, and L. Qiu, CDC 2016

イロト イポト イヨト イヨ

Load balancing via optimization in majorization order

イロト イヨト イヨト イヨ

Load balancing via optimization in majorization order

• Optimization in majorization order:

 $\min_{\prec} \quad h + d$ subject to $h \prec r^*, h \leq c.$

• When *c* is sufficiently large, the minimum exists and can be achieved by a simple algorithm with complexity linear in *NT*.

イロト 不得下 イヨト イヨト

Y. Mo, W. Chen, and L. Qiu, CDC, 2017