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 Quick facts
 Est. 2011, 1.9 km2

 1000 UG, 450 MS and 250 
PhD per year

 Faculty members: 330 (800)
 20 academicians, 48 (74) 

recipients of 1000-program 
(youth)

 14 schools/departments
 26 academic programs

 Goal
 World-class research 

university

Science

Engineering

Life science

Arts and 
social sci.

Business

Med. School

Innovation 
college

We are recruiting!



40% from gen./transp.
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FossilFossil

~60% in US

 Promising solutions
 Renewable generation

 Energy efficiency

 E-transportation

All related to smart grid technologies

Consumption

Waste

Emission

EnergyEnergy

Energy sustainability and smart grid



WT, PV EV, high speed train, 
metro, storage,
smart appliance
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Power system structure
pwr. electronics,

UHV

PMU

SG technologies: component level

Are they enough?
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 System level tech: DSR, market design, PS operation, cyber security, 
resilience, etc

System level challenge: how to make components 
work together, and make full advantages of them?

SG technologies: system level
An example:

deep penetration of renewables and EV

Mismatch,
large peak load

Unstable, inefficient

Renewable gen. EV charging load

++ ==
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 Demand side response
 E-transportation
 Electricity market

 WT control[1]

 Microgrid operation[2]

 Cyber security[3]

[1] Meng, WC, Yang, ZY, et al., Adaptive power capture control of variable-speed wind energy conversion systems with guaranteed transient and steady state 
performance, IEEE TEC, 28(3), 716-725, 2013;
[2] Yang, ZY, et al., Economical Operation of Microgrid with Various Devices via Distributed Optimization, IEEE TSG, 7(2), 857-867, 2016;
[3] Chai, B. and Yang, ZY. Impacts of unreliable communication and modified regret matching based anti-jamming approach in smart microgrid, AHN, 22, 69-82, 2014;

 System level research

My current research
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Demand Side Response



 According to electricity price, users change load profile by operating 
controllable components[4]

 Projects and benefits
 PJM, CAISO, NYISO, Ecogrid EU, etc.
 Peak load reduction: 0.9M kW in TX, 1.5M kW in CA
 Annual cost saving: $0.8B in MA, $2.5B in IL*

Concept and benefit

8*Advanced energy economy, 2014
[4] Deng, RL, Yang, ZY, et al., A Survey on Demand Response in Smart Grids: Mathematical Models and Approaches, IEEE TII, 11(3), 570-582, 2015;

high price

low price

Dynamic price:
G > D, low price
G < D, high price



 Structure

The building block in DSR
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price demand

competition[5]/coupling constraints[6]

[5] Deng, RL, Yang, ZY, et al., Residential Energy Consumption Scheduling: A Coupled-Constraint Game Approach, IEEE TSG, 5(3), 1340-1350, 2014;
[6] Deng, RL, Yang, ZY, et al., Load Scheduling with Price Uncertainty and Temporally-Coupled Constraints in Smart Grids, IEEE TPWRS, 29(6), 2823-2834, 
2014;

 An optimization perspective: min cost/max welfare

 Challenges
 Uncertain renewable gen., 0/1 decision of storage, large scale of system
 Receding horizon control: predict/update, re-optimize, execute
 Efficient/distributed algorithm

 Renewables
 Storages
 Appliances
 Small generators

Building block

Utility company

How to work together in 
response to dynamic price?



 Objective[7] (MILP, mixed integer linear program)

 Constraints: individual + balance

Mathematical formulation
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Total cost = gen. + purchase + user dissatisfaction + batt. loss

Supply Demand 

Spatially coupled 
over all components

[7] Yang, ZY, et al., Joint Scheduling of Large-Scale Appliances and Batteries via Distributed Mixed Optimization, IEEE TPWRS, 30(4), 2031-2040, 2015;



 Problem transformation

Distributed algorithm
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Primal

Batt. 
set

Dual problemLR

decouple Sub-gradient

Benders
decom.

Direct 
projection

Gen. App.distributed 
sub-problems

Unit
commit.



 Convex problem (find H-d vector ܽ݌):

 Based on KKT conditions, transform H-d implicit 
problem into 1-d explicit

Direct projection
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.func	a	as	௔௛݌ of	߬ܽ

Comp. reduced from 
H-d to 1-d



 How to find ߬ܽ

 Tow possibilities: either             , or 

Direct projection
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Bisection and 
interpolation



Results
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 Distributed computation

 Computational efficiency and 
scalability

 Schedule of each component



Extensions: green commercial building[8]
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 42% energy consumption in 
big cities

 Meeting scheduling for cost 
saving of HVAC

 Consider: thermodynamics, 
time, venue, attendees and 
dynamic price

 28.48% cost saving

[8] Chai, B. Yang, ZY, et al., Optimal Meeting Scheduling in Smart Commercial Building for Energy Cost Reduction, IEEE TSG, to appear, 2017;



Extensions: smart plug
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 Make common appliance smart
 Hardware and database
 Automated measure and control
 Monitoring platform and data 

analytics



Extensions: real load data analytics for grid operation*
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 Hybrid load forecast
 Geo-neighbor, weather, date

 Estimate DSR capability

*Data sets: Xuzhou city, per 15 min in 1 year, 153 public transformers; Fushun city, per 15 mins in 1 
month, 84229 households

User

reducible load shiftable load
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Electric Transportation



Private: > 200k KM (15yrs)
Taxi: > 200k KM (1.5yrs)
Bus: > 150k KM (2.5yrs)
Van: > 130k KM (2yrs)

E-transportation
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1/3 energy consumption and 1/4 emission

 Is EV financially beneficial?

Shenzhen, 100% by 2017 (e-bus) and 2018 (e-taxi); Taiyuan,100% e-taxi since 2017

Non-private EV is more 
important, but less noticed!!

 EV is twice energy efficient 
than petrol vehicle



 Must coordinate
 Large power: 30~120kW
 Temporal/spatial load unevenness
 Affect grid stability/efficiency
 Decide when and where to charge

 How to coordinate E-taxi fleet
in a distributed way?
 Central coordination is impractical

 Selfish driver, random status and position

 2-stage distributed method for drivers: temporal scheduling + spatial 
selection[8]

 Benefits: increase driver revenue; increase utilization of charging facilities; reduce grid load 
unevenness

System level challenge: fleet charging
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Charging load [Albuyeh’09]

[8] Guo, TC, and Yang, ZY, Joint Temporal-Spatial Coordination of Charging Decision of Electric Taxi Fleet, IEEE TPWRS, under review, 2017;



 What will a rational taxi driver do?
 Max revenue  Min charging cost (income loss) by picking a 

good time slot

Temporal scheduling
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 Cost mainly depends on queuing time, not electricity price

 Current cost is known, but future ones are unknown yet

binary decision

drive queue charge income
loss

cost:



 Backward induction of ݂ ݐ ൅ 1

 Last slot:

 Recursion:

 Thresholding method

Stochastic decision process
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exp. future
cost
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conditional
expected cost

Now or future?

Simple and distributed



 After decide charging now, I drivers select M CSs 
 Rational driver: min ݁݉݅ݐ	݈݃݊݅݁ݒܽݎݐ ൅ ݁݉݅ݐ	݃݊݅ݑ݁ݑݍ
 Early arriving EVs affect queue length

 Game of EVs: distributed decision
 Theorem: Nash Equilibrium existence and convergence
 Low cost and fairness at NE

Spatial selection
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busy



Performance (v.s. no coordination)
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Statistics

Charging pile utilization
N > 0, queue length; N < 0, vacant charging piles

 Increase revenue for 
driver

 Increase utilization ratio 
for charging facilities



Queue reduction in temporal domain

Performance (v.s. no coordination)
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Queue reduction in spatial domain

 Reduce charging demand unevenness for grid
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 Grid operator adjusts the aggregated charging load of e-taxi fleet, to 
track the desired profile[9]

Extensions: track varying generation

[9] Yang, J., Xu, Y. and Yang, Z., Regulating the Collective Charging Load of Electric Taxi Fleet via Real Time Pricing, IEEE TSG, 2017;



Extensions
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 With power network model[10]

 Kirchhoff’s law, optimal power flow
 Charging cost + dis. gen. cost, line 

loss, voltage drop
 Distributed solutions with privacy

 Bus[11] and private[12]

Scalability on PC

[10] You, PC, Yang, ZY, et al., Scheduling of EV Battery Swapping, parts I and II, IEEE TCONS, 2018;
[11] You, PC, Low, S. and Yang, ZY, Optimal Charging Schedule for a Battery Switching Station Serving Electric Buses, IEEE TPWRS, 31(5), 2016;
[12] You, PC, Yang, ZY, Chow, et al., Optimal Cooperative Charging Strategy for a Smart Charging Station of Electric Vehicles, IEEE TPWRS, 31(4), 2946-2956, 
2016;
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Extensions: in-station charging power scheduling*

*Data set: Huanan Charging Ltd., 811 charging piles in more than 2 years

laxity = 0min laxity = 30min

Scheduling 
makes real 

impact!

Laxity/min

~50% peak power 
reduction

Day

C
ha

rg
in

g 
co

st
/C

N
Y

Unscheduled
Scheduled

~40% cost saving
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Deregulated Electricity Market
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Deregulated v.s. regulated

 Many choices; supplier competition; high efficiency, low price

 Example: Japan
 Price reduction: 16.9% in 10 yrs; 300+ electricity companies

 Challenges
 Multi-buyer-multi-seller complex market; how do individuals act; how to 

accommodate uncertain renewable gen. in market



population

competition

Problem formulation
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 Two-level game[13]

Upper: non-cooperative game

Lower: evolutionary game

Iterations

Power Companies

End Users

[13] Chai, B., Yang ZY, et al., Demand Response Management with Multiple Utility Companies: A Two-Level Game Approach, IEEE TSG, 5(2), 722-731, 2014;



 Max welfare: via company selection and DSR

 Strategy of the user population:

User: choose the best company
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௛ݕ
௝: prob. of choosing company j at time h

company j: 
send price

user 1: comp. 
demand/welfare

user I: comp. 
demand/welfare

… comp. total 
welfare from 
company j

update ݕ௛
௝

also change demand

Choose the best company

Equilibrium: , or Different companies 
give same welfare

 How does it work?

 Theorem: guaranteed convergence to evolutionary equilibrium.



 Max individual revenue 
(sold elec. – generation cost)

 Price updating law: 

 Theorem: convergence to a 
unique Nash equilibrium

Company: compete via price adjustment
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௛ݎ
௝: Gen. to demand ratio

Different amount

Same price

Same product has same price. 
How about different products?



 Difference: uncertainty
 Risk of using renewables: more renewable demand, higher risk 

(monotonically increasing)
 2 markets and 2 prices

With renewables
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Market prices

Renewable is 
cheaper due to risk

Gen. of different plants



Future 
work

Current 
work
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Summary How to achieve energy sustainability?

 Efficient/optimal
• Fast DSR
• EV Charging coordination
• Decision in deregulated 

electricity market
• ……

Enable components 
working together

 Secure/robust
• Secure power-

transportation system
• Deregulated electricity-

flexibility co-market
• ……

Use system 
approaches to exploit 

interdependency

Vulnerability: deviations 
(error, fault, accident) may 
quickly propagate from one 

system to the othersOptimization problems 
Distributed algorithms
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Thank You!
Q & A
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