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Energy sustainability and smart grid

GLOBALENERGY CONSUMPTIONAND MIX 1800 - 2013
SED UPON DATA FROM BP STATISTICAL REVIEW 2014 (1965 - 2013), PRE 1965 AND BIOMASS FROM SMIL MTOE/a

Greenhouse Gas (GHG) Emissions  40% from gen./transp. . 15,000

m Promising solutions

> Renewable generation
> Energy efficiency

> E-transportation

All related to smart grid technologies

“60% in US




SG technologies: component level

Power system structure

pwr. electronics,
UHV

Generation Power grid Demand
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Renewables Transp. | Indus.

(market rules)
| J

IT infrastructure (Cyber-physical system)
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smart appliance

PMU

Are they enough?




SG technologies: system level

An example:
deep penetration of renewables and EV

Renewable gen. EV charging load
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System level challenge: how to make components
work together, and make full advantages of them?

e System level tech: DSR, market design, PS operation, cyber security,
resilience, etc




My current research

Generation Power grid. Demand
(physical laws)

Fossil + nuclear Resid -omme
——————— E-market i
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IT infrastructure (Cyber-physical system.

m System level research

» Demand side response >
» E-transportation >
» Electricity market >

[1] Meng, WC, Yang, ZY, et al., Adaptive power capture control of variable-speed wind energy conversion systems with guaranteed transient and steady state
performance, IEEE TEC, 28(3), 716-725, 2013;

[2] Yang, ZY, et al., Economical Operation of Microgrid with Various Devices via Distributed Optimization, IEEE TSG, 7(2), 857-867, 2016; 6
[3] Chai, B. and Yang, ZY. Impacts of unreliable communication and modified regret matching based anti-jamming approach in smart microgrid, AHN, 22, 69-82, 2014;



Demand Side Response

Sy




Concept and benefit

m According to electricity price, users change load profile by operating

controllable components!*

high price

— Usual consumption

Eea_k Optimized consumption
. . clipping
Dynamic price:
. Valley
G > D, low price " filling
G < D, high price 8 low price
Time

m Projects and benefits
>  PJM, CAISO, NYISO, Ecogrid EU, etc.
> Peak load reduction: 0.9M kW in TX, 1.5M kW in CA
> Annual cost saving: $0.8B in MA, $2.5B in IL*

[4] Deng, RL, Yang, ZY, et al., A Survey on Demand Response in Smart Grids: Mathematical Models and Approaches, IEEE TIl, 11(3), 570-582, 2015;

*Advanced energy economy, 2014



| The building block in DSR

m Structure '
B e Renewables
A Utility company g

e Storages
e Appliances

Fx -~ o Small generators

Building block 4w to work together in

response to dynamic price?

competitionl®/coupling constraintst®!

m  An optimization perspective: min cost/max welfare

m Challenges
> Uncertain renewable gen., 0/1 decision of storage, large scale of system
» Receding horizon control: predict/update, re-optimize, execute
» Efficient/distributed algorithm

[5] Deng, RL, Yang, ZY, et al., Residential Energy Consumption Scheduling: A Coupled-Constraint Game Approach, IEEE TSG, 5(3), 1340-1350, 2014;
[6] Deng, RL, Yang, ZY, et al., Load Scheduling with Price Uncertainty and Temporally-Coupled Constraints in Smart Grids, IEEE TPWRS, 29(6), 2823-2834, 9
2014;



Mathematical formulation

m Objectivel’l (MILP, mixed integer linear program)

minP = 20 D [felo) + i1 -+ 2o

he'H geg heH
f
30 D Va(P) + 32 Y rh(Phe +Pha)
heH ac A heH beB

Total cost = gen. + purchase + user dissatisfaction + batt. loss

m Constraints: individual + balance

thgpg 5"+ th d + " Prae = ZPU +P0 + me

f,e(,\ beB | “FA bheB Spatlally coupled

over all components

Supply Demand

[7] Yang, ZY, et al., Joint Scheduling of Large-Scale Appliances and Batteries via Distributed Mixed Optimization, IEEE TPWRS, 30(4), 2031-2040, 2015;
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‘ Distributed algorithm

m Problem transformation

__________________________________________________
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Direct projection

B Convex problem (find H-d vector p,):
i = llllnljll Z [a A (pa)]

p"““ <Ph<Pi™ D Pa=Da
o heH
m Based on KKT conditions, transform H-d implicit

problem into 1-d explicit

upa+a _ru+ltba ‘Eu =0 r Tqg — U4
hir ) = max{min{ 42 pmax{ pmin
P ARS Y St 3 ~h s P a s P a

h
” (Da B Z ! ) _ pq as afunc.of 7, 20,
he'H —< 'w(l:(ru) — II](]X{TH ( ‘;p:';lix O}
Comp. reduced from

h max
= ()
Ya (P —Pa ) H-d to 1-d AL 111:1,\({70{;1)2"“ + a, — 14, OI.
E (pmm p 1) -0 k
a a al —
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‘ Results

Distributed computation

Computational efficiency and
scalability

Schedule of each component
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Fig. 5. Power of supply side. (a) Generating power of generator set.

(b) Purchased power from grid.
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Fig. 8. Computation time of centralized and distributed implementation.
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Fig. 6. Load of demand side. (a) Battery. (b) Smart appliance.
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Extensions: green commercial building!®!

> 42% energy consumption in
big cities

> Meeting scheduling for cost
saving of HVAC

» Consider: thermodynamics,
time, venue, attendees and
dynamic price

> 28.48% cost saving

—
Rooms  Meetings |[Cost savings Optimal gap
5 5 33.52% 4.02%

5 10 32.28% 6.76%

5 15 24.27% 5.28%

5 20 12.47% 3.25%

7 10 35.08% 5.08%

7 15 32.48% 3.64%

7 20 28.62% 5.04%

7 25 18.86% 1.41%

9 15 35.80% 5.65%

9 20 37.12% 3.31%

9 25 30.05% 7.38%

9 30 21.17% 4.35%

average 28.48% 4.60%

[8] Chai, B. Yang, ZY, et al., Optimal Meeting Scheduling in Smart Commercial Building for Energy Cost Reduction, IEEE TSG, to appear, 2017;



Extensions: smart plug

GE: HF 7520

Make common appliance smart W _.
Hardware and database B R
Automated measure and control k

Monitoring platform and data
analytics

YV V V V
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| Extensions: real load data analytics for grid operation®

E
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*Data sets: Xuzhou city, per 15 min in 1 year, 153 public transformers; Fushun city, per 15 mins in 1 17
month, 84229 households



Electric Transportation

PROTERRA" VEHICLES COST MUCH LESS TO MAINTAIN THAN OTHERS

30% 75%
FEWEg E%\EEE HE& gﬁ N}%
PARTS REPAIRS analsl bl — FUELS

SAVE UP TO

$237,000.

ON MAINTENANCE COSTS OVER THE LIFETIME OF THE BUS
V5. DIESEL-HYERID
$194.K VS CNG  $151.K V5 DIESEL




E-transportation 1/3 energy consumption and 1/4 emission

m EVis twice energy efficient
than petrol venhicle

m Is EV financially beneficial?

X Private: > 200k KM (15yrs)
v Taxi: > 200k KM (1.5yrs)
v Bus: > 150k KM (2.5yrs)

v Van: > 130k KM (2yrs)

Non-private EV is more
important, but less noticed!!

Shenzhen, 100% by 2017 (e-bus) and 2018 (e-taxi); Taiyuan,100% e-taxi since 2017 |,



System level challenge: fleet charging

m Must coordinate

Large power: 30~120kW
Temporal/spatial load unevenness
Affect grid stability/efficiency

Y VWV Y VY

Decide when and where to charge

m How to coordinate E-taxi fleet
in a distributed way?

» Central coordination is impractical

¢ Selfish driver, random status and position

3
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Hours
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Case one
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8
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» 2-stage distributed method for drivers: temporal scheduling + spatial

selection®

¢ Benefits: increase driver revenue; increase utilization of charging facilities; reduce grid load

unevenness

[8] Guo, TC, and Yang, ZY, Joint Temporal-Spatial Coordination of Charging Decision of Electric Taxi Fleet, IEEE TPWRS, under review, 2017;
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Temporal scheduling

m \What will a rational taxi driver do?

> Max revenue = Min charging cost (income loss) by picking a
good time slot

t+ L t)—1
min C'(z) = min

T "=t
dnve queue charge income
1 loss

binary decision -Jﬂﬁ,\( )+y(1)—1 1

cost: c g (3)

-i.:T

» Cost mainly depends on queuing time, not electricity price

» Current cost is known, but future ones are unknown yet

21



Stochastic decision process

m Thresholding method

0, c(t) >

DI
ft+1)

cost

Simple and distributed

> Last slot;

> Recursion:

Backward induction of f(t + 1)

f(r) =a(m)e(r) + (1 —al(r)) f(r

/

probability of
charging at ©

~_

conditional
expected cost

exp. future

3

25

1
threshold

Now or future?

2.0 °
O
charge
o, 15 2 25 3 35 4 45 5 5.5
Time slot
0.7
0.65 ——&—— Threshold of charging cost | |

' ——8—— Real-time charging cost
0.6

6

(25, 0.3316)

10

20

30 40 50
Time slot

22

60



‘ Spatial selection

C3s1
. . . Far,
m After decide charging now, | drivers select M CSs Eﬂ but short queuing time Eﬂ cs2

> Rational driver: min(traveling time + queuing time)

» Early arriving EVs affect queue length ECS\
to go?
gr:
—w Near,

| Game Of EVS d|Str|buted deCISIOH but long queuing time

PETi
> Theorem: Nash Equilibrium existence and convergence m/ E‘ﬂ
- CSm

> Low cost and fairness at NE csa

4 4
o] Poe?t?ons of plug—in elecm:c taxis ©  Positions of plug-in electric taxis
.1 Positions of charging stations | | O  Positions of charging stations
o o 3r Q¢ G Q
| C59 - T L CS9
oL i s\ ] 2t o[ mcse -
1S h 3 r A‘\ o - \
:.._\ N © - .L \ -
1 [ i 1k . - @]
E o Nt e £ o o O .~
-~ e . cs8 - B css
0l — e —Bg 2
\\{;3. \\\ / Cs2 "
> ol
Atk 9] 1k £ ¥
s a8 -~ g
bo cs7.© , TN & " / oo CS7_—©
2} TR, 21 e e
5® R cst g [ G840 I
3 3
3 2 1 0 1 2 3 -3 2 1 0 1 2 3
X/ km X /km
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Performance (v.s. no coordination)

m Increase revenue for

driver
Case One Two
[tem
Average income of PETs (¥/day) 592.41 | 635.81 |
Average traveling time of PETs (min) 6.00 1.37
Average queuing time of PETs (min) 060.67 527 ]
Average queuing rate of PETs (%) 67.38 | 35.37
Average idle rate of charging piles (%) | 23.52 16.96

Statistics

15

10

Z 5
0

-2

Increase utilization ratio
for charging facilities

Case one

FT I I I ! ! ! ! I ! ! ! ! I ! ! ! ! I I I 5 T4

R

12345678 9101112131415161718192021222324

6 a% aéé ﬁﬂﬁé mé

12345678 9101112131415161718192021222324
Time/h

Charging pile utilization

N > 0, queue length; N < 0, vacant charging piles
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Performance (v.s. no coordination)

m Reduce charging demand unevenness for grid

—= PRI W

Queuing time / min
= o E [ = TR U
T T T T T

Queuing time / min
0 = L O
T T T T T

Case one
I Cucuing time at different time periods -
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Case two
I Cucuing time at different time periods
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Queue reduction in temporal domain

50

40

30

Queuing time at CSs / min

X/ km

4

3

2

Queuing time at CSs / min

X/ km

Case one
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Queue reduction in spatial domain
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Extensions: track varying generation

m Grid operator adjusts the aggregated charging load of e-taxi fleet, to

track the desired profilel®!
x 10° generation and load profile
1.75 . 1 : :
generation—loss| . :

1.7_ ..... base"ne load .' .............. é... — ‘\\....E. ............. -
— — — baseline+PETs | / ~i X \

165F ------------ e ..... / / S A& . \\\ .........

o AN / ________ e, - T—

155 ............... .............. ;.‘/.;, ............. .............. \_

15 _"ﬁ-'x ............ f .............. .............. ........ IR RS

1 . . . .

5 A I,

L . {1 - ' ' \
145_ ........... B AR s MR & B & B RS B s RSN S Ve e 5 8 BRI -
. 4y . [ : ' : |

4 . f . '

generation and load(kWh)

Y . . . . \
[} I’vul " . " . L
1 ! '|‘
1.4_.....‘4.|.. ........ T L I T P & = & wmman e @ @ % 8 el e § S W 8 e -

B\ ; A : : :
1.35}F---: X: \;’ ..... R TR R REETEEEE b 4

1.3F------} \ ........ .............. .............. ............. -

1.25 i i i i
0 10 20 30 40 50
slot

[9] Yang, J., Xu, Y. and Yang, Z., Regulating the Collective Charging Load of Electric Taxi Fleet via Real Time Pricing, IEEE TSG, 2017;
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‘ Extensions

m  With power network model!1%
» Kirchhoff’'s law, optimal power flow

» Charging cost + dis. gen. cost, line
loss, voltage drop

» Distributed solutions with privacy

O Ev [ staion1 [J staton2 [J] station3 [J station4

4 200———————————— .
Scalability on PC
2 160+
3 s, c— I E 2
P
. 2 120
£ 2
> E
S 80-
[4h)
&
1- e
E 40+
0 O
0 1 2 3 4 0 100 200 300 400 500 600 700 800 900 1000
X (km) Number of EVs

m Bus!' and privatel'?]

[10] You, PC, Yang, ZY, et al., Scheduling of EV Battery Swapping, parts | and Il, IEEE TCONS, 2018;

[11] You, PC, Low, S. and Yang, ZY, Optimal Charging Schedule for a Battery Switching Station Serving Electric Buses, IEEE TPWRS, 31(5), 2016;

[12] You, PC, Yang, ZY, Chow, et al., Optimal Cooperative Charging Strategy for a Smart Charging Station of Electric Vehicles, IEEE TPWRS, 31(4), 2946—2956,27
2016;



Power/kw

Power/kw

120

laxity = Omin _
min=0
max= 109.4667

100

mean= 21.8678
std= 22.6835 |
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120 T T
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~50% peak power m
100 | H std
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\
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0
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700

laxity = 30min
min=0
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il
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std=9.7839

03/01 03/06

600 -

(%))

Q

o
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100

~40% cost saving

Unscheduled

Scheduled

5 10 15 20
Day

25 30

I Extensions: in-station charging power scheduling®

Scheduling
makes real
impact!

*Data set: Huanan Charging Ltd., 811 charging piles in more than 2 years
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Deregulated Electricity Market

eMWh T

Price

Demand

Wind and Nuclear

Supply

Gasturbines

Condensing
plants

MWh
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Deregulated v.s. regulated

m  Many choices; supplier competition; high efficiency, low price

N

ﬁ [ | ' i‘_t_

q

> =

: :

: la.

.ag.,, ii '"J"@Th_._‘

Generation Transmission

« no longer * remains
utility only utility only

= no longer « lines open
regulo g:d to ol
suppliers suppliers
ompete

m Example: Japan

el mi,
Distribution Customers
e remaoins utility e choose
responsibility generation
. suppliers
® service remoins
the some

« rotes remain
regulated

» Price reduction: 16.9% in 10 yrs; 300+ electricity companies

m Challenges

» Multi-buyer-multi-seller complex market; how do individuals act; how to
accommodate uncertain renewable gen. in market

30



Problem formulation

Power
Generation

m Two-level gamel's]

Upper: non-cooperative game

Power Companies

“Company .
’,,,%C‘_‘__ 2 P
,Cf_ éﬁ-'::: —.:.:" ——
~~ Company Com
i —( P,
) =
- [terations ~| |
rnce ‘ ‘ Demand
T‘x | I
End Users

Lower:

evolutionary game

[13] Chai, B., Yang ZY, et al., Demand Response Management with Multiple Utility Companies: A Two-Level Game Approach, |IEEE TSG, 5(2), 722-731, 2014;
31




User: choose the best company

m  Max welfare: via company selection and DSR

m Strategy of the user population:
Y] y,{: prob. of choosing company j at time h

— [, ,,2
}/h- — [yhsyha“'

m How does it work?

company j:
send price

t

)
3”},}3 v

Choose the best company

user 1: comp.

demand/welfare -
comp. total _
— welfare from update yﬂ
company | |
user |: comp. | |
demand/welfare

also change demand |

m Theorem: guaranteed convergence to evolutionary equilibrium.

Equilibrium: g7, = 0, 0r 7§ = - -

— ﬂ-’{ — 7 anferent companies
give same welfare

32



Company: compete via price adjustment

Different amount

/4

<+ & 4 =ttt +
—=&— Utility company 1
= + = Utility company 2

m Max individual revenue
(sold elec. — generation cost)

201

m Price updating law:

10F

pj';_(m +1)= p‘f;(m) + 09 (l - -rf,_(m,))

0 1 1 1 1 1
0 9 10 15 20 25 30

[teration

Amount of power generation

rhj : Gen. to demand ratio 2 1 ,
B ol
m Theorem: convergence to a g —e— Uity conpay 1
unique Nash equilibrium : .l ‘Same price |- * - Uity company 2
= B
0.5 . . . . .
0 5 10 15 20 25 30

[teration

Same product has same price.
How about different products?
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With renewables

m Difference: uncertainty
> Risk of using renewables: more renewable demand, higher risk

35

0r

25+

Price

200 @
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(monotonically increasing)
» 2 markets and 2 prices
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0000000 =]
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. 2000
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1 1 1 1 0
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Time

Market prices

Time

Gen. of different plants
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| Summary How to achieve energy sustainability?

Use system
approaches to exploit
interdependency

Enable components
working together

Optimization problems
Distributed algorithms

Vulnerability: deviations
(error, fault, accident) may
quickly propagate from one

system to the others
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Thank You!
Q& A
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